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Measurement Concepts
C H A P T E R 

  http://evolve.elsevier.com/Grove/practice/

Measurement is the process of assigning 
numbers to objects, events, or situations in 
accord with some rule (Kaplan, 1963). The 

numbers assigned can indicate numerical values or 
categories for the objects being measured for research 
or practice. Instrumentation, a component of mea-
surement, is the application of specific rules to develop 
a measurement device such as a scale or questionnaire. 
Quality instruments are essential for obtaining trust-
worthy data when measuring outcomes for research 
and practice (Doran, 2011; Melnyk & Fineout-
Overhold, 2011; Waltz, Strickland, & Lenz, 2010).

The rules of measurement were developed so that 
the assigning of values or categories might be done 
consistently from one subject (or event) to another and 
eventually, if the measurement method is found to be 
meaningful, from one study to another. The rules of 
measurement established for research are similar to 
the rules of measurement implemented in nursing 
practice. For example, when nurses measure the urine 
output from patients, they use an accurate measure-
ment device, observe the amount of urine in the device 
or container in a consistent way, and precisely record 
the urine output in the medical record. This practice 
promotes accuracy and precision and reduces the 
amount of error in measuring physiological variables 
such as urine output.

When measuring a subjective concept such as pain 
experienced by a child, researchers and nurses in prac-
tice need to use an instrument that captures the pain 
the child is experiencing. A commonly used scale to 
measure a child’s pain is the Wong-Baker FACES Pain 
Rating Scale (Hockenberry & Wilson, 2009). By using 
this valid and reliable rating scale to measure the 
child’s pain, any change in the measured value can be 
attributed to a change in the child’s pain rather than 
measurement error. A copy of the Wong-Baker FACES 
Pain Rating Scale is provided in Chapter 17. Selecting 
accurate and precise physiological measurement 

methods and valid and reliable scales and question-
naires is essential in measuring study variables and 
outcomes in practice (Bannigan & Watson, 2009; 
Bialocerkowski, Klupp, & Bragge, 2010; DeVon, 
et al., 2007).

Researchers need to understand the logic within 
measurement theory so that they can select and use 
existing instruments or develop new quality measure-
ment methods for their studies. Measurement theory, 
as with most theories, uses terms with meanings that 
can be best understood within the context of the 
theory. The following explanation of the logic of mea-
surement theory includes definitions of directness of 
measurement, measurement error, levels of measure-
ment, and reference of measurement. The reliability 
and validity of measurement methods, such as scales 
and questionnaires, are detailed. The accuracy, preci-
sion, and error of physiological measures are described. 
The chapter concludes with a discussion of sensitivity; 
specificity; and likelihood ratios examined to deter-
mine the quality of diagnostic tests and instruments 
used in healthcare research and practice.

Directness of Measurement
Measurement begins by clarifying the object, charac-
teristic, or element to be measured. Only then can one 
identify or develop strategies or methods to measure 
it. In some cases, identification of the measurement 
object and measurement strategies can be objective, 
specific, and straightforward, as when we are measur-
ing concrete factors, such as a person’s weight or waist 
circumference; this is referred to as direct measure-
ment. Healthcare technology has made direct mea-
sures of objective elements—such as height, weight, 
temperature, time, space, movement, heart rate, and 
respiration—familiar to us. Technology is also avail-
able to measure many biological and chemical char-
acteristics, such as laboratory values, pulmonary 
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Types of Measurement Errors
Two types of errors are of concern in measurement: 
random error and systematic error. To understand 
these types of errors, we must first understand the ele-
ments of a score on an instrument or an observation. 
According to measurement theory, there are three 
components to a measurement score: true score, 
observed score, and error score. The true score (T) is 
what we would obtain if there was no error in mea-
surement. Because there is always some measurement 
error, the true score is never known. The observed 
score (O) is the measure obtained for a subject using 
a selected instrument during a study. The error score 
(E) is the amount of random error in the measurement 
process. The theoretical equation of these three mea-
sures is as follows:

Observed score true score random error= +

This equation is a means of conceptualizing random 
error and not a basis for calculating it. Because the 
true score is never known, the random error is never 
known but only estimated. Theoretically, the smaller 
the error score, the more closely the observed score 
reflects the true score. Therefore, using instruments 
that reduce error improves the accuracy of measure-
ment (Waltz et al., 2010).

Several factors can occur during the measurement 
process that can increase random error. These factors 
include (1) transient personal factors, such as fatigue, 
hunger, attention span, health, mood, mental status, 
and motivation; (2) situational factors, such as a hot 
stuffy room, distractions, the presence of significant 

functions, and sleep patterns. Nurses are also experi-
enced in gathering direct measures of demographic 
variables, such as age, gender, ethnicity, diagnosis, 
marital status, income, and education.

However, in nursing, the characteristic we want to 
measure often is an abstract idea or concept, such as 
pain, stress, depression, anxiety, caring, or coping. If 
the element to be measured is abstract, it is best clari-
fied through a conceptual definition (see Chapter 8). 
The conceptual definition can be used to select or 
develop appropriate means of measuring the concept. 
The instrument or measurement strategy used in the 
study must match the conceptual definition. An 
abstract concept is not measured directly; instead, 
indicators or attributes of the concept are used to rep-
resent the abstraction. This is referred to as indirect 
measurement. For example, the complex concept of 
coping might be defined by the frequency or accuracy 
of identifying problems, the creativity in selecting 
solutions, and the speed or effectiveness in resolving 
the problem. A single measurement strategy rarely, if 
ever, can completely measure all aspects of an abstract 
concept. Multi-item scales have been developed to 
measure abstract concepts, such as the Spielberger 
State-Trait Anxiety Inventory developed to measure 
individuals’ innate anxiety trait and their anxiety in a 
specific situation (Spielberger, Gorsuch, & Lushene, 
1970).

Measurement Error
There is no perfect measure. Error is inherent in any 
measurement strategy. Measurement error is the dif-
ference between what exists in reality and what is 
measured by an instrument. Measurement error exists 
in both direct and indirect measures and can be random 
or systematic. Direct measures, which are considered 
to be highly accurate, are subject to error. For example, 
the weight scale may not be accurate, laboratory 
equipment may be precisely calibrated but may change 
with use, or the tape measure may not be placed in the 
same location or held at the same tension for each 
measurement.

There is also error in indirect measures. Efforts to 
measure concepts usually result in measuring only 
part of the concept or measures that identify an aspect 
of the concept but also contain other elements that are 
not part of the concept. Figure 16-1 shows a Venn 
diagram of the concept A measured by instrument A-1. 
In this figure, A-1 does not measure all of concept A. 
In addition, some of what A-1 measures is outside the 
concept of A. Both of these situations are examples of 
errors in measurement and are shaded in Figure 16-1.

Figure 16-1  Measurement error when measuring a concept. 
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(which is 0) yields the observed score, as shown by 
the following equations:

T true score with systematic error
E random error of 
( )

( )
+

0 == O (observed score)

or

T E O+ =

Some systematic error is incurred in almost any 
measure; however, a close link between the abstract 
theoretical concept and the development of the instru-
ment can greatly decrease systematic error. Because 
of the importance of this factor in a study, researchers 
spend considerable time and effort in selecting and 
developing quality measurement methods to decrease 
systematic error.

Another effective means of diminishing systematic 
error is to use more than one measure of an attribute 
or a concept and to compare the measures. To make 
this comparison, researchers use various data collec-
tion methods, such as scale, interview, and observa-
tion. Campbell and Fiske (1959) developed a technique 

others, rapport with the researcher, and the playfulness 
or seriousness of the situation; (3) variations in the 
administration of the measurement procedure, such as 
interviews in which wording or sequence of questions 
is varied, questions are added or deleted, or research-
ers code responses differently; and (4) processing of 
data, such as errors in coding, accidentally marking 
the wrong column, punching the wrong key when 
entering data into the computer, or incorrectly totaling 
instrument scores (Devon et al., 2007; Waltz et al., 
2010).

Random error causes individuals’ observed scores 
to vary in no particular direction around their true 
score. For example, with random error, one subject’s 
observed score may be higher than his or her true 
score, whereas another subject’s observed score may 
be lower than his or her true score. According to mea-
surement theory, the sum of random errors is expected 
to be zero, and the random error score (E) is not 
expected to correlate with the true score (T). Random 
error does not influence the mean to be higher or lower 
but rather increases the amount of unexplained vari-
ance around the mean. When this occurs, estimation 
of the true score is less precise.

If you were to measure a variable for three sub-
jects and diagram the random error, it might appear 
as shown in Figure 16-2. The difference between the 
true score of subject 1 (T1) and the observed score 
(O1) is two positive measurement intervals. The dif-
ference between the true score (T2) and observed 
score (O2) for subject 2 is two negative measurement 
intervals. The difference between the true score (T3) 
and observed score (O3) for subject 3 is zero. The 
random error for these three subjects is zero (+2 − 2 
+ 0 = 0). In viewing this example, one must remem-
ber that this is only a means of conceptualizing 
random error.

Measurement error that is not random is referred 
to as systematic error. A scale that weighs subjects 3 
pounds more than their true weights is an example of 
systematic error. All of the body weights would be 
higher, and, as a result, the mean would be higher 
than it should be. Systematic error occurs because 
something else is being measured in addition to the 
concept. A conceptualization of systematic error is 
presented in Figure 16-3. Systematic error (repre-
sented by the shaded area in the figure) is due to the 
part of A-1 that is outside of A. This part of A-1 mea-
sures factors other than A and biases scores in a par-
ticular direction.

Systematic error is considered part of T (true score) 
and reflects the true measure of A-1, not A. Adding the 
true score (with systematic error) to the random error 

Figure 16-2  Conceptualization of random error. 
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Figure 16-3  Conceptualization of systematic error. 
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the relationship between concept A and concept B. In 
Figure 16-5, the shaded area enclosed in the dark lines 
represents the true relationship between concepts A 
and B, such as the relationship between anxiety and 
depression. For example, two instruments, A-1 (Spiel-
berger State Anxiety Scale) and B-1 (Center for Epi-
demiological Studies Depression Scale, Radloff, 
1977), are used to examine the relationship between 
concepts A and B. The part of the true relationship 
actually reflected by A-1 and B-1 measurement 
methods is represented by the colored area in Figure 
16-6. Because two instruments provide a more accu-
rate measure of concepts A and B, more of the true 
relationship between concepts A and B can be 
measured.

If additional instruments (A-2 and B-2) are used to 
measure concepts A and B, more of the true relation-
ship might be reflected. Figure 16-7 demonstrates with 
different colors the parts of the true relationship 
between concepts A and B that is measured when 
concept A is measured with two instruments (A-1 and 
A-2) and concept B is measured with two instruments 
(B-1 and B-2).

Levels of Measurement
The traditional levels of measurement have been used 
for so long that the categorization system has been 
considered absolute and inviolate. In 1946, Stevens 
organized the rules for assigning numbers to objects 
so that a hierarchy in measurement was established 
called the levels of measurement. The levels of mea-
surement, from lower to higher, are nominal, ordinal, 
interval, and ratio.

of using more than one method to measure a concept, 
referred to as the multimethod-multitrait technique. 
More recently, the technique has been described as a 
version of mixed methodology, as discussed in 
Chapter 10. These techniques allow researchers to 
measure more dimensions of abstract concepts, and 
the effect of the systematic error on the composite 
observed score decreases. Figure 16-4 illustrates how 
more dimensions of concept A are measured through 
the use of four instruments, designated A-1, A-2, A-3, 
and A-4.

For example, a researcher could decrease system-
atic error in measures of anxiety by (1) administering 
the Spielberger State-Trait Anxiety Inventory, (2) 
recording blood pressure readings, (3) asking the 
subject about anxious feelings, and (4) observing the 
subject’s behavior. Multimethod measurement strate-
gies decrease systematic error by combining the values 
in some way to give a single observed score of anxiety 
for each subject. However, sometimes it may be dif-
ficult logically to justify combining scores from 
various measures, and a mixed-methods approach 
might be the most appropriate to use in the study. 
Mixed-methods study uses a combination of quantita-
tive and qualitative approaches in their implementa-
tion (Creswell, 2009).

In some studies, researchers use instruments to 
examine relationships. Consider a hypothesis that tests 

Figure 16-4  Multiple measures of an abstract concept. 
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Nominal Level of Measurement
Nominal level of measurement is the lowest of the 
four measurement levels or categories. It is used when 
data can be organized into categories of a defined 
property but the categories cannot be ordered. For 
example, diagnoses of chronic diseases are nominal 
data with categories such as hypertension, type 2 dia-
betes, and dyslipidemia. One cannot say that one cat-
egory is higher than another or that category A 
(hypertension) is closer to category B (diabetes) than 
to category C (dyslipidemia). The categories differ in 
quality but not quantity. One cannot say that subject 
A possesses more of the property being categorized 
than does subject B. (Rule: The categories must be 
unorderable.) Categories must be established so that 
each datum fits into only one of the categories. (Rule: 
The categories must be exclusive.) All the data must 
fit into the established categories. (Rule: The catego-
ries must be exhaustive.)

Figure 16-8 provides a summary for the rules for 
the four levels of measurement—nominal, ordinal, 
interval, and ratio. Data such as ethnicity, gender, 
marital status, religion, and diagnoses are examples of 
nominal data. When data are coded for entry into the 
computer, the categories are assigned numbers. For 
example, gender may be classified as 1 = male and 
2 = female. The numbers assigned to categories in 
nominal measurement are used only as labels and 
cannot be used for mathematical calculations.

Ordinal Level of Measurement
Data that can be measured at the ordinal level can be 
assigned to categories of an attribute that can be 
ranked. There are rules for how one ranks data. As 

Figure 16-6  Examining a relationship using one measure of each 
concept. 
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Figure 16-7  Examining a relationship using two measures of each 
concept. 
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Figure 16-8  Summary of the rules for levels of measurement. 
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absolute zero point, one can justifiably say that object 
A weighs twice as much as object B, or that container 
A holds three times as much as container B. Labora-
tory values are also an example of ratio level of mea-
surement where the individual with a fasting blood 
sugar (FBS) of 180 has an FBS twice that of an indi-
vidual with a normal FBS of 90. To help expand 
understanding of levels of measurement (nominal, 
ordinal, interval, and ratio) and to apply this knowl-
edge, Grove (2007) developed a statistical workbook 
focused on examining the levels of measurement, 
sampling methods, and statistical results in published 
studies.

Importance of Level of Measurement for 
Statistical Analyses
An important rule of measurement is that one should 
use the highest level of measurement possible. For 
example, you can collect data on age (measured) in a 
variety of ways: (1) you can obtain the actual age of 
each subject (ratio level of measurement); (2) you can 
ask subjects to indicate their age by selecting from a 
group of categories, such as 20 to 29, 30 to 39, and 
so on (ordinal level of measurement); or (3) you can 
sort subjects into two categories of younger than 65 
years of age and 65 years of age and older (nominal 
level of measurement). The highest level of measure-
ment in this case is the actual age of each subject, 
which is the preferred way to collect these data. If you 
need age categories for specific analyses in your 
research, the computer can be instructed to create  
age categories from the initial age data (Waltz et al., 
2010).

The level of measurement is associated with the 
types of statistical analyses that can be performed on 
the data. Mathematical operations are limited in the 
lower levels of measurement. With nominal levels of 
measurement, only summary statistics, such as fre-
quencies, percentages, and contingency correlation 
procedures, can be used. However, if a variable such 
as age is measured at the ratio level (actual age of the 
subject), the data can be analyzed with more sophisti-
cated analysis techniques. Variables measured at the 
interval or ratio level can be analyzed with the stron-
gest statistical techniques available, which are more 
effective in identifying relationships among variables 
or determining differences between groups (Corty, 
2007; Grove, 2007).

Controversy over Measurement Levels
There is controversy over the system that is used to 
categorize measurement levels, dividing researchers 
into two factions: fundamentalists and pragmatists. 

with nominal-scale data, the categories must be exclu-
sive and exhaustive. With ordinal level data, the quan-
tity of the attribute possessed can be identified. 
However, it cannot be shown that the intervals between 
the ranked categories are equal (see Figure 16-8). 
Ordinal data are considered to have unequal intervals. 
Scales with unequal intervals are sometimes referred 
to as ordered metric scales.

Many scales used in nursing research are ordinal 
levels of measure. For example, one could rank inten-
sity of pain, degrees of coping, levels of mobility, 
ability to provide self-care, or daily amount of exer-
cise on an ordinal scale. For daily exercise, the scale 
could be 0 = no exercise; 1 = moderate exercise, no 
sweating; 2 = exercise to the point of sweating; 3 = 
strenuous exercise with sweating for at least 30 
minutes per day; 4 = strenuous exercise with sweating 
for at least 1 hour per day. This type of scale may be 
referred to as a metric ordinal scale.

Interval Level of Measurement
In interval level of measurement, distances between 
intervals of the scale are numerically equal. Such mea-
surements also follow the previously mentioned rules: 
mutually exclusive categories, exhaustive categories, 
and rank ordering. Interval scales are assumed to be a 
continuum of values (see Figure 16-8). The researcher 
can identify the magnitude of the attribute much more 
precisely. However, it is impossible to provide the 
absolute amount of the attribute because of the absence 
of a zero point on the interval scale.

Fahrenheit and Celsius temperatures are commonly 
used as examples of interval scales. A difference 
between a temperature of 70° F and one of 80° F is 
the same as the difference between a temperature of 
30° F and one of 40° F. We can measure changes in 
temperature precisely. However, it is impossible to say 
that a temperature of 0° C or 0° F means the absence 
of temperature because these indicate very cold 
temperatures.

Ratio Level of Measurement
Ratio level of measurement is the highest form of 
measure and meets all the rules of the lower forms  
of measures: mutually exclusive categories, exhaus-
tive categories, rank ordering, equal spacing between 
intervals, and a continuum of values. In addition, ratio 
level measures have absolute zero points (see Figure 
16-8). Weight, length, and volume are common exam-
ples of ratio scales. Each has an absolute zero point, 
at which a value of zero indicates the absence of  
the property being measured: Zero weight means  
the absence of weight. In addition, because of the 
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Therefore, we have included the nonparametric statis-
tical procedures needed for their analysis in Chapters 
22 to 25 on statistics.

Reference Testing  
of Measurement
Referencing involves comparing a subject’s score 
against a standard. Two types of testing involve  
referencing: norm-referenced testing and criterion-
referenced testing. Norm-referenced testing ad-
dresses the question, “How does the average person 
score on this test or instrument?” This testing in-
volves standardization of scores for an instrument 
that is accomplished by data collection over several 
years, with extensive reliability and validity informa-
tion available on the instrument. Standardization  
involves collecting data from thousands of subjects 
expected to have a broad range of scores on the  
instrument. From these scores, population parameters 
such as the mean and standard deviation (described 
in Chapter 22) can be developed. Evidence of the 
reliability and validity of the instrument can also be 
evaluated through the use of the methods described 
later in this chapter. The best-known norm-referenced 
test is the Minnesota Multiphasic Personality Inven-
tory (MMPI), which is used commonly in psychology 
and occasionally in nursing research and practice to 
diagnosis personality disorders. The Graduate Record 
Examination (GRE) is another norm-referenced test 
commonly used as one of the admission criteria for 
graduate study.

Criterion-referenced testing asks the question, 
“What is desirable in the perfect subject?” It involves 
comparing a subject’s score with a criterion of 
achievement that includes the definition of target 
behaviors. When the subject has mastered these 
behaviors, he or she is considered proficient in  
the behavior (DeVon et al., 2007; Sax, 1997). The 
criterion might be a level of knowledge or desirable 
patient outcomes. Criterion measures have been used 
for years to evaluate outcomes in healthcare agencies  
and to determine clinical expertise of students. For 
example, a clinical evaluation form would include the 
critical behaviors the nurse practitioner (NP) student 
is expected to master in a pediatric course to be clini-
cally competent to care for pediatric patients at the 
end of the course. Criterion-reference testing is also 
used in nursing research. Criterion-referenced testing 
might be used to measure the clinical expertise of a 
nurse or the self-care of a cardiac patient after cardiac 
rehabilitation.

Pragmatists regard measurement as occurring on a 
continuum rather than by discrete categories, whereas 
fundamentalists adhere rigidly to the original system 
of categorization (Nunnally & Bernstein, 1994; 
Stevens, 1946).

The primary focus of the controversy relates to the 
practice of classifying data into the categories ordinal 
and interval. This controversy developed because, 
according to the fundamentalists, many of the current 
statistical analysis techniques can be used only with 
interval and ratio data. Many pragmatists believe that 
if researchers rigidly adhered to rules developed by 
Stevens (1946), few if any measures in the social sci-
ences would meet the criteria to be considered interval-
level data. They also believe that violating Stevens’ 
criteria does not lead to serious consequences for the 
outcomes of data analysis. Pragmatists often treat 
ordinal data from multi-item scales as interval data, 
using statistical methods (parametric analysis tech-
niques) to analyze them, such as Pearson’s product-
moment correlation coefficient, t-test, and analysis of 
variance (ANOVA), which are traditionally reserved 
for interval or ratio level data (Armstrong, 1981; 
Knapp, 1990). Fundamentalists insist that the analysis 
of ordinal data be limited to statistical procedures 
designed for ordinal data, such as nonparametric pro-
cedures. Parametric statistical analysis techniques 
were developed to analyze interval and ratio level 
data, and nonparametric techniques were developed to 
analyze nominal and ordinal data (see Chapter 21).

The Likert scale uses scale points such as “strongly 
disagree,” “disagree,” “uncertain,” “agree,” and 
“strongly agree.” Numerical values (e.g., 1, 2, 3, 4, 
and 5) are assigned to these categories. Fundamental-
ists claim that equal intervals do not exist between 
these categories. It is impossible to prove that there is 
the same magnitude of feeling between “uncertain” 
and “agree” as there is between “agree” and “strongly 
agree.” Therefore, they hold this is ordinal level data, 
and parametric analyses cannot be used. Pragmatists 
believe that with many measures taken at the ordinal 
level, such as scaling procedures, an underlying inter-
val continuum is present that justifies the use of para-
metric statistics (Knapp, 1990; Nunnally & Bernstein, 
1994).

Our position agrees more with the pragmatists 
than with the fundamentalists. Many nurse research-
ers analyze data from Likert scales and other rating 
scales as though the data were interval level (Waltz 
et al., 2010). However, some of the data in nursing 
research are obtained through the use of crude mea-
surement methods that can be classified only into the 
lower levels of measurement (ordinal or nominal). 
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comparability of a measurement method (Bartlett & 
Frost, 2008). The strongest measure of reliability is 
obtained from heterogeneous samples versus homoge-
neous samples. Heterogeneous samples have more 
between-participant variability, and this is a stronger 
evaluation of reliability than homogeneous samples 
with little between-participant variation. When criti-
cally appraising the reliability of an instrument in a 
study, you need to examine the sample for heterogene-
ity by determining the variability of the scores among 
study participants (Bartlett & Frost, 2008; Bialocer-
kowski et al., 2010).

All measurement techniques contain some random 
error, and the errors might be due to the measurement 
method used, the study participants, or the researchers 
gathering the data. Reliability exists in degrees and is 
usually expressed as a form of correlation coefficient, 
with 1.00 indicating perfect reliability and 0.00 indi-
cating no reliability (Bialocerkowski et al., 2010). For 
example, reliability coefficients of 0.80 or higher are 
considered strong values for an established psychoso-
cial scale such as the State-Trait Anxiety Inventory by 
Spielberger et al. (1970). With test-retest, the closer 
that reliability coefficient is to 1.00, the more stable 
the measurement method. The reliability coefficient 
varies based on the type of reliability being examined. 
The three most common types of reliability discussed 
in healthcare studies are (1) stability reliability, (2) 
equivalence reliability, and (3) internal consistency 
(Bannigan & Watson, 2009; Bialocerkowski et al., 
2010; DeVon et al., 2007; Waltz et al., 2010).

Stability Reliability
Stability reliability is concerned with the consistency 
of repeated measures of the same attribute with the 
use of the same scale or instrument over time. It is 
usually referred to as test-retest reliability. This 
measure of reliability is generally used with physical 
measures, technological measures, and paper-and-
pencil scales. The technique requires an assumption 
that the factor to be measured remains the same at the 
two testing times and that any change in the value or 
score is a consequence of random error.

The optimal time period between test-retest mea-
surements depends on the variability of the variable 
being measured, complexity of the measurement 
process, and characteristics of the participants (Bialo-
cerkowski et al., 2010). Physical measures and equip-
ment can be tested and then immediately retested, or 
the equipment can be used for a time and then retested 
to determine the necessary frequency of recalibration. 
For example, in measuring blood pressure (BP), 
researchers often take two to three BP readings 5 

Reliability
The reliability of an instrument denotes the consis-
tency of the measures obtained of an attribute, item, 
or situation in a study or clinical practice. The greater 
the reliability or consistency of the measures of a 
particular instrument, the less random error in the 
measurement method (Bannigan & Watson, 2009; 
Bialocerkowski et al., 2010; DeVon et al., 2007). If 
the same measurement scale is administered to the 
same individuals at two different occasions, the mea-
surement is reliable if the individuals’ responses to the 
items remain the same (assuming that nothing has 
occurred to change their responses). For example, if 
you use a scale to measure the anxiety levels of 10 
individuals at two points in time 30 minutes apart, you 
would expect the individuals’ anxiety levels to be rela-
tively unchanged from one measurement to the next 
if the scale is reliable. If two data collectors observe 
the same event and record their observations on a 
carefully designed data collection instrument, the 
measurement would be reliable if the recordings from 
the two data collectors are comparable. The equiva-
lence of their results would indicate the reliability of 
the measurement technique. If responses vary each 
time a measure is performed, there is a chance that the 
instrument is unreliable, meaning that it yields data 
with a large random error.

Reliability plays an important role in the selection 
of measurement methods for use in a study. Research-
ers need instruments that are reliable and provide 
values with only a small amount of error. Reliable 
instruments enhance the power of a study to detect 
significant differences or relationships actually occur-
ring in the population under study. It is important to 
examine the reliability of an instrument from previous 
research before using it in a study. Estimates of instru-
ment reliability are specific to the population and 
sample being studied. High reported reliability values 
on an established instrument do not guarantee that its 
reliability would be satisfactory in another sample 
from a different population (Waltz et al., 2010). 
Researchers need to perform reliability testing on each 
instrument used in their study before performing other 
statistical analyses. The reliability values must be 
included in the published report of a study to docu-
ment that the instruments used were reliable for the 
study sample (Bialocerkowski et al., 2010; DeVon 
et al., 2007).

Reliability testing examines the amount of mea-
surement error in the instrument being used in a study. 
Reliability is concerned with the dependability, con-
sistency, stability, precision, reproducibility, and 
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Stability of a measurement method is important and 
needs to be examined as part of instrument develop-
ment and discussed when the instrument is used in a 
study. When describing test-retest results, researchers 
need to discuss the process and the time period 
between administering an instrument and the rationale 
for this time frame. If a scale was administered twice 
30 minutes apart or there was 1 month between test 
and retesting, the consistency of the subjects’ scores 
need to be discussed in terms of the timing for retest-
ing (Bannigan & Watson, 2009; Bialocerkowski et al., 
2010; DeVon et al., 2007).

Equivalence Reliability
Equivalence reliability compares two versions of the 
same paper-and-pencil instrument or two observers 
measuring the same event. Comparison of two observ-
ers is referred to as interrater reliability. Comparison 
of two paper-and-pencil instruments is referred to as 
alternate-forms reliability or parallel-forms reli-
ability. Alternative forms of instruments are of more 
concern in the development of normative knowledge 
testing. However, when repeated measures are part of 
the design, alternative forms of measurement, although 
not commonly used, would improve the design. Dem-
onstrating that one is actually testing the same content 
in both tests is extremely complex, and the procedure 
is rarely used in clinical research (Bialocerkowski 
et al., 2010).

The procedure for developing parallel forms 
involves using the same objectives and procedures to 
develop two like instruments. These two instruments 
when completed by the same group of study partici-
pants on the same occasion or two different occasions 
should have approximately equal means and standard 
deviations. In addition, these two instruments should 
correlate equally with another variable. For example, 
if two instruments were developed to measure pain, 
the scores from these two scales should correlate 
equally with perceived anxiety score. If both forms of 
the instrument are administered during the same occa-
sion, a reliability coefficient can be calculated to deter-
mine equivalence. A coefficient of 0.80 or higher 
indicates equivalence (Waltz et al., 2010).

Determining interrater reliability is a concern 
when studies include observational measurement, 
which is common in qualitative research. Interrater 
reliability values need to be reported in any study in 
which observational data are collected or judgments 
are made by two or more data gatherers. Two tech-
niques determine interrater reliability. Both tech-
niques require that two or more raters independently 
observe and record the same event using the protocol 

minutes apart and average the readings to obtain a 
reliable or precise measure of BP. Researchers can 
follow the standards for recalibration of equipment or 
be more conservative. The standard requirements 
might be to recalibrate the BP equipment every 6 
months, but researchers might choose to recalibrate 
the equipment every month or even every week if 
multiple BP readings are being taken each day for a 
study. The test-retest of a measurement method might 
have a longer period of time if the variable being 
measured changes slowly. For example, the diagnosis 
of osteoporosis is made by bone mineral density 
(BMD) study of the hip, spine, and wrist. The BMD 
score is determined with a dual-energy x-ray absorp-
tiometry (DEXA) scan. Because the BMD does not 
change rapidly in people even with treatment, test-
retest over a 1- to 2-month time period could be used 
to show reliable or consistent DEXA scan scores for 
patients.

With paper-and-pencil educational tests, a period 
of 2 to 4 weeks is recommended between the two 
testing times, but the time period for retesting does 
depend on what is measured and the instrument used 
(Sax, 1997). After the same participants have been 
retested with the same instrument, the investigators 
perform a correlational analysis on the scores from the 
two measurement times. This correlation is called the 
coefficient of stability, and the closer the coefficient 
is to 1.00, the more stable the instrument (Waltz et al., 
2010). For some scales, test-retest reliability has not 
been as effective as originally anticipated. The proce-
dure presents numerous problems. Subjects may 
remember their responses from the first testing time, 
leading to overestimation of the reliability. Subjects 
may be changed by the first testing and may respond 
to the second test differently, leading to underestima-
tion of the reliability (Bialocerkowski et al., 2010).

Test-retest reliability requires the assumption that 
the factor being measured has not changed between 
the measurement points. Many of the phenomena 
studied in nursing, such as hope, coping, pain, and 
anxiety, do change over short intervals. Thus, the 
assumption that if the instrument is reliable, values 
will not change between the two measurement periods 
may not be justifiable. If the factor being measured 
does change, the test is not a measure of reliability. If 
the measures stay the same even though the factor 
being measured has changed, the instrument may lack 
reliability. If researchers are going to examine the reli-
ability of an instrument with test-retest, they need to 
determine the optimum time between administrations 
of the instrument based on the variable being mea-
sured and the study participants (Devon et al., 2007).
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without administering the test twice. The instrument 
items were split in odd-even or first-last halves, and a 
correlational procedure was performed between the 
two halves. In the past, researchers generally reported 
the Spearman-Brown correlation coefficient in their 
studies (Nunnally & Bernstein, 1994; Sax, 1997). One 
of the problems with the procedure was that although 
items were usually split into odd-even items, it was 
possible to split them in a variety of ways. Each 
approach to splitting the items would yield a different 
reliability coefficient. The researcher could continue 
to split the items in various ways until a satisfactorily 
high coefficient was obtained.

More recently, testing the internal consistency of 
all the items in the instrument has been seen as a better 
approach to determining reliability. Although the 
mathematics of the procedure are complex, the logic 
is simple. One way to view it is as though one con-
ducted split-half reliabilities in all the ways possible 
and then averaged the scores to obtain one reliability 
score. Internal consistency testing examines the extent 
to which all the items in the instrument consistently 
measure a concept. Cronbach’s alpha coefficient is 
the statistical procedure used for calculating internal 
consistency for interval and ratio level data. This reli-
ability coefficient is essentially the mean of the inter-
item correlations and can be calculated using most 
data analysis programs such as the Statistical Program 
for the Social Sciences (SPSS). If the data are dichoto-
mous, such as a symptom list that has responses of 
present or absent, the Kuder-Richardson formulas (KR 
20 or KR 21) can be used to calculate the internal 
consistency of the instrument (DeVon et al., 2007). 
The KR 21 assumes that all the items on a scale or test 
are equally difficult; the KR 20 is not based on this 
assumption. Waltz et al. (2010) provided the formulas 
for calculating both KR 20 and KR 21.

Cronbach’s alpha coefficients can range from 0.00, 
indicating no internal consistency or reliability, to 
1.00, indicating perfect internal reliability with no 
measurement error. Alpha coefficients of 1.00 are not 
obtained in study results because all instruments have 
some measurement error. However, many respected 
psychosocial scales used for 15 to 30 years to measure 
study variables in a variety of populations have strong 
0.8 or greater internal reliability coefficients. The 
coefficient of 0.80 (or 80%) indicates the instrument 
is 80% reliable with 20% random error (DeVon et al., 
2007; Fawcett & Garity, 2009; Grove, 2007). Scales 
with 20 or more items usually have stronger internal 
consistency coefficients than scales with 10 to 15 
items or less. Often scales that measure complex con-
structs such as quality of life (QOL) have subscales 

developed for the study or that the same rater ob-
serves and records an event on two occasions. To 
judge interrater reliability adequately, the raters need 
to observe at least 10 subjects or events (DeVon et al., 
2007; Waltz et al., 2010). A digital recorder can be 
used to record the raters to determine their consis-
tency in recording essential study information. Every 
data collector used in the study must be tested for 
interrater reliability and trained to a consistency in 
data collection.

One procedure for calculating interrater reliability 
requires a simple computation involving a comparison 
of the agreements obtained between raters on the 
coding form with the number of possible agreements. 
This calculation is performed through the use of the 
following equation:

Number of agreements number of possible
agreements interrat

÷
= eer reliability

This formula tends to overestimate reliability, a 
particularly serious problem if the rating requires only 
a dichotomous judgment, such as present or absent. In 
this case, there is a 50% probability that the raters will 
agree on a particular item through chance alone. If 
more than two raters are involved, a statistical proce-
dure to calculate coefficient alpha (discussed later in 
this chapter) may be used. ANOVA may also be used 
to test for differences among raters. There is no abso-
lute value below which interrater reliability is unac-
ceptable. However, any value less than 0.80 (80%) 
should generate serious concern about the reliability 
of the data because there is 20% chance of error. The 
more ideal interrater reliability value is 0.90, which 
means 90% reliability and 10% error. The process for 
determining interrater reliability and the value 
achieved need to be included in the research report 
(DeVon et al., 2007).

When raters know they are being watched, their 
accuracy and consistency are considerably better than 
when they believe they are not being watched. Inter-
rater reliability declines (sometimes dramatically) 
when the raters are assessed covertly (Topf, 1988). 
You can develop strategies to monitor and reduce the 
decline in interrater reliability, but they may entail 
considerable time and expense.

Internal Consistency
Tests of instrument internal consistency or homoge-
neity, used primarily with paper-and-pencil tests or 
scales, address the correlation of various items within 
the instrument. The original approach to determining 
internal consistency was split-half reliability. This 
strategy was a way of obtaining test-retest reliability 
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that measure different aspects of QOL, such as health, 
physical functioning, and spirituality. Some of these 
complex scales with distinct subscales, such as the 
QOL scale, might have lower Cronbach’s alpha coef-
ficients since the scale is measuring different aspects 
of QOL. The subscales have fewer items than the total 
scale and usually lower Cronbach’s alpha coefficients 
but do need to show internal consistency in measuring 
a concept (Bialocerkowski et al., 2010; Waltz et al., 
2010).

Newer instruments, developed in the last 5 years, 
might show moderate internal reliability (0.70 to 0.79) 
when used in measuring variables in a variety of 
samples. The subscales of these new instruments 
might have internal reliability from 0.60 to 0.69. The 
authors of these scales might continue to refine them 
based on additional reliability and validity information 
to improve the reliability of the total scale and sub-
scales. Reliability coefficients less than 0.60 are con-
sidered low and indicate limited instrument reliability 
or consistency in measurement with high random 
error. Higher levels of reliability or precision (0.90 to 
0.99) are important for physiological measures that are 
used to determine critical physiological functions such 
as arterial pressure and oxygen saturation (Bialocer-
kowski et al., 2010; DeVon et al., 2007).

The quality of the instrument reliability needs to  
be examined in terms of the type of study, measure-
ment method, and population (DeVon et al., 2007; 
Kerlinger & Lee, 2000). In published studies, research-
ers need to identify the reliability coefficients of an 
instrument from previous research and for their par-
ticular study. Because the reliability of an instrument 
can vary from one population or sample to another, it 
is important that the reliability of the scale and sub-
scales be determined and reported for the sample in 
each study (Bialocerkowski, et al., 2010).

Dickerson, Kennedy, Wu, Underhill, and Othman 
(2010) conducted a study of QOL and anxiety levels 
of patients with implantable defibrillators. They pro-
vided the following discussion of the reliability of the 
scales they used in their study.

themselves on a 4-point scale of 1 (not at all) to 4 
(very much so). The median α [alpha] reliability of the 
inventory was reported to be 0.93 [from previous 
studies].… Cronbach’s α scores for the present study 
ranged from 0.90 to 0.96 for the 3 time periods. Only 
the state anxiety score was used in this analysis.

“Quality-of-life measure. Quality-of-life was mea-
sured using the Ferrans and Powers Quality of Life 
Index, Cardiac Version (QLI: CV) (Bliley & Ferrans, 
1993). The QLI: CV measures the subject’s percep-
tion of QOL, according to a 72-item scale consisting 
of 2 parts. The first part measures satisfaction with 
various aspects of life and the second part measures 
the importance of these aspects to a subject. In part 
1, subjects respond to a 6-point scale, ranging from 
‘very important’ (6 points) to ‘very unimportant’ (1 
point). Scores are calculated by weighing the satisfac-
tion responses with the importance responses. They 
reflect how satisfied subjects are with the aspects of 
life that are important to them. The 4 subscales of 
QOL scored include health and functioning, social and 
economic, psychological/spiritual, and family. The reli-
ability of the total scale’s internal consistency was 
supported by α coefficients ranging from 0.90 to 0.95. 
Stability and reliability were supported by a test-retest 
correlation of 0.87 at a 2-week interval, and 0.81 at 
a 1-month interval.… Cronbach’s α scores for the 
present study ranged from 0.95 to 0.96 for total QLI: 
CV, and for the subscales, Cronbach’s α scores ranged 
from 0.88 to 0.94.” (Dickerson et al., 2010, p. 468)

Dickerson et al. (2010) used two very reliable 
scales to measure their study variables and docu-
mented this in their article. They measured anxiety 
with the Spielberger STAI, which was developed more 
than 40 years ago (Spielberger et al., 1970), has shown 
strong internal consistency in previous research 
(median alpha = 0.93), and was reliable in this study 
(Cronbach’s alpha = 0.90 to 0.96). In previous studies, 
the QLI: CV had strong internal consistency for the 
total scale (alpha = 0.90-0.95) and stability reliability 
with test-retest over 2 weeks and 1 month. In addition 
to the strong stability reliability coefficients, the 
researchers also provided the time frames for the test-
retests that were run on the scale. Another strength is 
that the QLI: CV showed strong internal consistency 
for the total scale (alpha = 0.95 to 0.96) and the four 
subscales (alpha = 0.88 to 0.94) with the population 
in this study.

Other approaches to testing internal consistency are 
(1) Cohen’s kappa statistic, which determines the 

“Anxiety. Anxiety was measured by the Spielberger 
State-Trait Anxiety Inventory (STAI), which deter-
mines a subject’s current state of anxiety. This instru-
ment differentiates between the temporary condition 
of ‘state anxiety’ and the longstanding quality of ‘trait 
anxiety.’ The STAI is a 40-item instrument that gages 
emotional reactions to the environment (e.g., ‘I am 
tense,’ ‘I feel upset,’ or ‘I am worried’). Subjects rate 
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the evidence of validity. This important work greatly 
extends our understanding of what validity is and how 
to achieve it. According to the American Psychologi-
cal Association’s Committee to Develop Standards 
(1999), validity addresses the appropriateness, mean-
ingfulness, and usefulness of the specific inferences 
made from instrument scores. It is the inferences made 
from the scores, not the scores themselves, that are 
important to validate (Devon et al., 2007; Goodwin & 
Goodwin, 1991).

Validity, similar to reliability, is not an all-or- 
nothing phenomenon but rather a matter of degree. No 
instrument is completely valid. One determines the 
degree of validity of a measure rather than whether or 
not it has validity. Determining the validity of an 
instrument often requires years of work. Many authors 
equate the validity of the instrument with the rigorous-
ness of the researcher. The assumption is that because 
the researcher develops the instrument, the researcher 
also establishes the validity. However, this is an erro-
neous assumption because validity is not a commodity 
that researchers can purchase with techniques. Validity 
is an ideal state—to be pursued, but not to be attained. 
As the roots of the word imply, validity includes truth, 
strength, and value. Some authors might believe that 
validity is a tangible “resource,” which can be acquired 
by applying enough appropriate techniques. However, 
we reject this view and believe measurement validity 
is similar to integrity, character, or quality, to be 
assessed relative to purposes and circumstances and 
built over time by researchers conducting a variety of 
studies (Brinberg & McGrath, 1985).

Figure 16-9 illustrates validity (the shaded area) by 
the extent to which the instrument A-1 reflects concept 

percentage of agreement with the probability of chance 
being taken out; (2) correlating each item with the 
total score for the instrument; and (3) correlating each 
item with each other item in the instrument. This pro-
cedure, often used in instrument development, allows 
researchers to identify items that are not highly cor-
related and delete them from the instrument. Factor 
analysis may also be used to develop instrument reli-
ability. The number of factors being measured influ-
ences the reliability of the instrument, and total 
instrument scores may be more reliable than the scores 
of the subscales. After performing the factor analysis, 
the researcher can delete instrument items with low 
factor weights. After these items have been deleted, 
reliability scores on the instrument are higher. For 
instruments with more than one factor, correlations 
can be performed between items and factor scores (see 
Chapter 23 for a discussion of factor analysis).

It is essential that an instrument be both reliable 
and valid for measuring a study variable in a popula-
tion. If the instrument has low reliability values, it 
cannot be valid because its measurement is inconsis-
tent and has high measurement error (DeVon et al., 
2007; Waltz et al., 2010). An instrument that is reliable 
cannot be assumed to be valid for a particular study 
or population. You need to determine the validity of 
the instrument you are using for your study, which you 
can accomplish in a variety of ways.

Validity
The validity of an instrument determines the extent to 
which it actually reflects or is able to measure the 
construct being examined. Several types of validity 
are discussed in the literature, such as content validity, 
predictive validity, criterion validity, and construct 
validity. Within each of these types, subtypes have 
been identified. These multiple types of validity are 
very confusing, especially because the types are not 
discrete but are interrelated (Bannigan & Watson, 
2009; DeVon et al., 2007; Fawcett & Garity, 2009).

In this text, validity is considered a single broad 
measurement evaluation that is referred to as con-
struct validity and includes various types, such as 
content validity, validity from factor analysis, conver-
gent and divergent validity, validity from contrasting 
groups, and validity from prediction of future and 
current events (DeVon et al., 2007). All of the previ-
ously identified types of validity are now considered 
evidence of construct validity. In 1999, in its Stan-
dards for Educational and Psychological Testing, the 
American Psychological Association’s Committee to 
Develop Standards published standards used to judge Figure 16-9  Representation of instrument validity. 

A-1

Systemic
error

Validity

A
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Documentation of content validity begins with 
development of the instrument. The first step of instru-
ment development is to identify what is to be mea-
sured; this is referred to as the universe or domain of 
the construct. You can determine your domain through 
a concept analysis or an extensive literature search. 
Qualitative methods can also be used for this purpose. 
Johnson and Rogers (2006) developed the Medication-
Taking Questionnaire (MTQ) based on purposeful 
action dimensions to determine the decision-making 
process of individuals for adherence to medication 
treatment for hypertension. They described their initial 
instrument development process as follows.

A. As measurement of the concept improves, validity 
improves. The extent to which the instrument A-1 
measures items other than the concept is referred to as 
systematic error (identified as the unshaded area of 
A-1 in Figure 16-9). As systematic error decreases, 
validity increases.

Validity varies from one sample to another and 
from one situation to another; therefore, validity 
testing affirms the appropriateness of an instrument 
for a specific group or purpose rather than the instru-
ment itself (DeVon et al., 2007; Waltz et al., 2010). 
An instrument may be valid in one situation but not 
valid in another. Instruments used in nursing studies 
that were developed for use in other disciplines need 
to be examined for validity in terms of nursing knowl-
edge. An instrument developed to measure cognitive 
function in educational studies might not capture the 
cognitive function level of elderly adults measured in 
a nursing study. Researchers are encouraged to reex-
amine validity in each of their study situations. The 
types of validity covered in this section include face 
and content validity, readability of an instrument, 
validity from factor analysis, validity from structural 
analysis, validity from contrasting (or known) groups, 
convergent and divergent validity, validity from dis-
criminant analysis, validity from prediction of future 
and concurrent events, and successive verification 
validity.

Face and Content Validity
In the 1960s and 1970s, the only type of validity that 
most studies addressed was referred to as face valid-
ity, which verified basically that the instrument looked 
like it was valid or gave the appearance of measuring 
the construct it was supposed to measure. Face valid-
ity is a subjective assessment that might be made by 
the researchers or potential subjects. Because this is a 
subjective judgment with no clear guidelines for 
making the judgment, this is considered the weakest 
form of validity (DeVon et al., 2007). However, it is 
still an important aspect of the usefulness of the instru-
ment because the willingness of subjects to complete 
the instrument relates to their perception that the 
instrument measures the construct they agreed to 
provide (Thomas, 1992). Face validity is often consid-
ered a step before or an aspect of content validity.

Content validity examines the extent to which the 
measurement method includes all the major elements 
relevant to the construct being measured. This evi-
dence is obtained from the following three sources: 
the literature, representatives of the relevant popula-
tions, and content experts (DeVon et al., 2007; Fawcett 
& Garity, 2009; Waltz et al., 2010).

“A total of 20 items (need, n = 8; effectiveness, n = 6; 
and safety, n = 6) were initially developed to tap the 
three underlying dimensions of purposeful action 
based on the statements given by participants in a 
qualitative study (Johnson, 2002; Johnson, Williams, & 
Marshall, 1999). The method for item construction 
was guided by the principles outlined in DeVellis 
(1991) and Streiner and Norman (1995).… The 
MTQ: Purposeful Action items were arranged in  
a 7-point, Likert-type format describing responses 
based on agreement (7 = always agree, 6 = very fre-
quently agree, 5 = usually agree, and 4 = occasionally 
agree, 3 = rarely agree, 2 = almost never agree, 1 = 
never agree). The 7-response option was used in an 
attempt to obtain optimal variance while discouraging 
a ceiling effect (Steiner & Norman, 1995). Higher 
scores for the MTQ: Purposeful Action indicated 
greater intent to take medications based on per-
ceived need, effectiveness, and safety.” (Johnson & 
Rogers, 2006, p. 339)

Researchers need to describe the procedures used 
to develop or select items for the instrument that rep-
resent the domain of the construct. One helpful strat-
egy commonly used is to develop a blueprint or matrix, 
such as was used in developing test items for an exam-
ination that was done by Johnson (2002) in her dis-
sertation focused on development of the MTQ. 
However, before developing such items, the blueprint 
specifications must be submitted to an expert panel to 
validate that they are appropriate, accurate, and repre-
sentative. At least five experts are recommended, 
although a minimum of three experts is acceptable if 
you cannot locate additional individuals with expertise 
in the area. Researchers might seek out individuals 
with expertise in various fields—for example, one 
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succinct.” In addition to evaluating existing items, the 
experts were asked to identify important areas not 
included in the instrument. The calculation for the 
CVI is presented in Table 16-1 using the format devel-
oped by Lynn (1986). Complete agreement needs to 
exist among the expert reviewers to retain an item with 
seven or fewer reviewers. If few reviewers are used 
and many of the experts support most of the items on 
an instrument, this often results in an inflated CVI and 
an inflation in the content validity of the instrument 
(DeVon et al., 2007).

As presented earlier, Johnson and Rogers (2006) 
developed the MTQ: Purposeful Action and described 
their content validity testing process and outcomes as 
follows.

individual with knowledge of instrument develop-
ment, a second with clinical expertise in an appropri-
ate field of practice, and a third with expertise in 
another discipline relevant to the content area.

The experts need specific guidelines for judging the 
appropriateness, accuracy, and representativeness of 
the specifications. Berk (1990) recommended that the 
experts first make independent assessments and then 
meet for a group discussion of the specifications. The 
instrument specifications then can be revised and 
resubmitted to the experts for a final independent 
assessment. Davis (1992) recommended that the 
researcher provide expert reviewers with theoretical 
definitions of concepts and a list of which instrument 
items are expected to measure each of the concepts. 
The researcher asks the reviewers to judge how well 
each of the concepts has been represented in the 
instrument.

Researchers need to determine how to measure the 
domain. The item format, item content, and proce-
dures for generating items must be carefully described. 
Items are then constructed for each cell in the matrix, 
or observational methods are designated to gather data 
related to a specific cell. Researchers are expected to 
describe the specifications used in constructing items 
or selecting observations. Sources of content for items 
must be documented. Then researchers can assemble, 
refine, and arrange the items in a suitable order before 
submitting them to the content experts for evaluation. 
Specific instructions for evaluating each item and the 
total instrument must be given to the experts.

In developing content validity for an instrument, 
researchers can calculate a content validity ratio 
(CVR) for each item on a scale by rating it 0 (not 
necessary), 1 (useful), or 3 (essential). A method for 
calculating the CVR was developed by Lawshe (1975) 
and is presented in Table 16-1 (DeVon et al., 2007). 
Minimum CVR scores for including items in an instru-
ment can be based on a one-tailed test with a 0.05 level 
of significance.

The content validity score calculated for the com-
plete instrument is called the content validity index 
(CVI). The CVI was developed to obtain a numerical 
value that reflects the level of content-related validity 
evidence for a measurement method (Waltz & Bausell, 
1981). In calculating CVI, experts rate the content 
relevance of each item in an instrument using a 4-point 
rating scale. Lynn (1986, p. 384) recommended stan-
dardizing the options on this scale to read as follows: 
“1 = not relevant; 2 = unable to assess relevance 
without item revision or item is in need of such revi-
sion that it would no longer be relevant; 3 = relevant 
but needs minor alteration; 4 = very relevant and 

“Content validity testing was undertaken to deter-
mine clarity and relevance of content. Participants and 
experts were given verbal instructions and a packet 
consisting of a consent form, written instructions, 
clarity instrument, content validity instrument, and 
demographic questionnaire. The clarity instrument 
asked participants to rate items as clear or unclear 
(Imle & Atwood, 1988). Participants were given a 
definition of each subscale and asked to rate each 
item’s relevancy using a 4-point scale from 1 (irrele-
vant) to 4 (extremely relevant; Lynn, 1986). Space 
was provided to make comments after each rating 
procedure. (p. 339)

Items met clarity criterion if 70% of participants 
rated the item as clear and the content validity crite-
rion if 80% of participants rated the item as 3 or 4 
(Imle & Atwood, 1988; Lynn, 1986). The comments 
from the clarity and content validity criterion were 
used to revise the MTQ: Purposeful Action items and 
subscales.…

Of the 20 MTQ: Purpose Action items, 19 achieved 
clarity and content validity agreement. The 1 item 
that had an unacceptable clarity agreement was even-
tually eliminated from the questionnaire. Profession-
als expressed a concern about the lack of specificity 
in the questions, but that was not an issue for the 
hypertensive participants. For example, one profes-
sional indicated that the item, ‘Blood pressure pills 
keep me from having problems,’ lacked specificity. 
Because the purpose of this questionnaire was to 
establish a general screening tool for individuals who 
potentially may choose not to take their medications 
rather than to create a diagnostic tool, the partici-
pants’ scores were given priority. Of the 20 items [see 
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professionals who examined the MTQ for clarity and 
content relevance (Imle & Atwood, 1988; Lynn, 
1986). Professionals were invited to participate in the 
study based on their known experience with antihy-
pertensive treatment and included two family physi-
cians, a cardiology nurse practitioner, a nurse working 
with a statewide cardiovascular disease program, and 
a nurse researcher who had published articles on 
adherence. All professionals were Anglo American 
and were nearly equally divided with regard to 
gender.

Participants for the content validity phase who had 
been prescribed antihypertensive medications and 
lived in a situation in which they managed their own 
medications were recruited through healthy aging 
clinics, worksite wellness programs, hospital outpa-
tient clinics, and hospital emergency departments in 
the intermountain west. The five hypertensive par-
ticipants were Anglo American, had at least a high 
school education and ranged in age from 48 to 90 
years (M = 62.0 ± 16.4).” (Johnson & Rogers, 2006, 
p. 338)

From DeVon, H. A., Block, M. E., Moyle-Wright, P., Ernst, D. M., Hayden, S. J., Lazzara, D. J., Savoy, S. M., & Kostas-Polston, E. (2007). A psychometric 
toolbox for testing validity and reliability. Journal of Nursing Scholarship, 39(2), 158.

TABLE 16-1  Two Methods of Calculating the Content Validity Ratio (CVR) and the Content Validity 
Index (CVI)

Lawshe (1975) Lynn (1986)
Rating scale Scale used for rating items Scale used for rating items

0 1 3
Not necessary Useful Essential

1 2 3 4
Irrelevant Extremely Relevant

Calculations To calculate CVR (a score for individual 
scale items)

CVI for each scale item is the proportion of experts who rate the 
item as a 3 or 4 on a 4-point scale. Example: If 4 of 6 content 
experts rated an item as relevant (3 or 4), CVI would be: 4/6 
= 0.67

CVR = (ne − N/2)/(N/2) This item would not meet the 0.83 level of endorsement required 
to establish content validity using a panel of 6 experts at the 
0.05 level of significance. Therefore, it would be dropped

Note: ne = The number of experts who rated 
an item as “essential”

CVI for the entire scale is the proportion of the total number of 
items deemed content valid. Example: If 77 of 80 items were 
deemed content valid, CVI would be: 77/80 = 0.96

N = the total number of experts. Example: If 
8 of 10 experts rated an item as essential, 
CVR would be (8 − 5/5) = 0.60

Acceptable 
range

Depends on number of reviewers Depends on number of reviewers

Before sending the instrument to experts for evalu-
ation, researchers need to decide how many experts 
must agree on each item and on the total instrument 
for the content to be considered valid. Items that do 
not achieve minimum agreement by the expert panel 
must be either eliminated from the instrument or 
revised (DeVon et al., 2007; Lynn, 1986). Johnson and 
Rogers (2006) described their panel of reviewers, who 
were health professionals and patients prescribed anti-
hypertensive medications, for the MTQ in the follow-
ing excerpt.

Table 16-2 for the 20 items in the original question-
naire], 12 underwent minor grammatical revisions 
guided by the comments of both the participants and 
professionals. For example, items were made specific 
to blood pressure and the term medication was 
changed to pills. Several items were reworded, or the 
tense of the verb was changed.” (Johnson & Rogers, 
2006, pp. 341-342)

“Content validity testing was conducted in a sample 
of five hypertensive patients and five health care Johnson and Rogers (2006) provided excellent 

detail about the development of their instrument and 
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TABLE 16-2  Medication-Taking Questionnaire: Purposeful Action—Initial 20 Items Statistics

M SD
Item-Total 
Correlation

Mann-Whitney 
Adherence p Values*

Perceived Need

My blood pressure pills keep me from having a stroke. 5.8 1.5 0.58 0.08
I need to take my blood pressure pills. 6.4 1.4 0.77 0.01
I take my blood pressure pills for my health. 6.5 1.3 0.75 0.01
Blood pressure pills keep me from having health-related 

problems.
5.7 1.5 0.63 0.17

I could have health problems if I do not take my blood 
pressure pills.

6.1 1.3 0.74 0.13

It’s not a problem if I miss my blood pressure pills.† 5.1 2.0 0.30 0.02
I would rather treat my blood pressure without pills.† 4.1 2.3 0.37 0.26
I am OK if I do not take my blood pressure pills.† 5.6 1.8 0.64 0.012

Perceived Effectiveness

My blood pressure will come down enough without pills.† 5.4 1.8 0.40 0.10
I will have problems if I don’t take my blood pressure pills. 6.1 1.4 0.63 0.001
My blood pressure pills control my blood pressure. 6.0 1.4 0.66 0.46
Blood pressure pills benefit my health. 6.1 1.4 0.74 0.01
I feel better when I take my blood pressure pills. 5.4 1.8 0.56 0.01
I have problems finding pills that will control my blood 

pressure.†
5.7 1.8 0.09 0.059

Perceived as Safe

The side effects from my blood pressure pills are a problem.† 5.2 1.9 0.40 0.10
The side effects from my blood pressure pills are harmful.† 5.6 1.8 0.63 0.27
My blood pressure pills are safe. 5.8 1.4 0.66 0.47
Taking my blood pressure pills is not a problem because they 

benefit my health.
6.0 1.4 0.74 0.02

My blood pressure pills cause other health problems.† 5.4 1.8 0.56 0.35
I will become dependent on my blood pressure pills.† 3.9 2.3 −0.5 0.20

From Johnson, M. J., & Rogers, S. (2006). Development of the Purposeful Action Medication-Taking Questionnaire. Western Journal of Nursing Research, 
28(3), 344.
*Difference between low (scored 1-3) versus high (scored 7-10) adherence.
†Reverse coded.
M, Mean; SD, standard deviation.

the process for determining content validity. They also 
provided extensive information about the expert 
review panel for conducting the content validity 
testing. The strength of the review panel is that it 
included both health professionals and patients taking 
medications for hypertension. However, since all the 
reviewers were Anglo American, there was no ethnic 
diversity in the review process. The MTQ was a Likert 
scale with 7-point response options (described earlier), 
so it would be clearer if the researchers had called the 
MTQ a Likert scale versus a questionnaire (Waltz 
et al., 2010).

With some modifications, the content validity pro-
cedure previously described can be used with exist-
ing instruments, many of which have never been 

evaluated for content-related validity. With the per-
mission of the author or researcher who developed 
the instrument, you could revise the instrument to 
improve its content-related validity (Lynn, 1986). In 
addition, the panel of experts or reviewers evaluating 
the items of the instrument for content validity might 
also examine it for readability and language accept-
ability to possible subjects or data gatherers (Berk, 
1990; DeVon et al., 2007).

Readability of an Instrument
Readability is an essential element of the validity and 
reliability of an instrument. Assessing the level of 
readability of an instrument is simple and takes 
seconds with the use of a computer. There are more 
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than 30 readability formulas. These formulas count 
language elements in the document and use this infor-
mation to estimate the degree of difficulty a reader 
may have in comprehending the text. Readability for-
mulas are now a standard part of word-processing 
software. Box 16-1 provides instructions for using the 
Fog formula to determine the readability of a measure-
ment method.

Although readability has never been formally iden-
tified as a component of content validity, it is essential 
that the items of an instrument be comprehended by 
subjects. Miller and Bodie (1994) suggested that the 
researcher should directly assess the reading compre-
hension level of the study population before using a 
formula to calculate an instrument’s readability. They 
indicated that it is a mistake to assume that someone’s 
literacy is equivalent to the last grade level the indi-
vidual completed. Miller and Bodie (1994) recom-
mended that researchers use the Classroom Reading 

Box 16-1	 How to Find the Fog Index 
(Fog Formula)

1.	Pick a sample of writing 100 to 125 words 
long. Count the average number of words 
per sentence. In counting, treat 
independent clauses as separate sentences. 
“In school we studied; we learned; we 
improved” is three sentences.

2.	Count the words of three syllables or more. 
Do not count: (a) capitalized words, (b) 
combinations of short words such as 
butterfly or manpower, or (c) verbs made 
into three syllables by adding “-es” or “-ed” 
such as trespasses or created. Divide the 
count of long words by the number of 
words in the passage to get the percentage.

3.	Add the results from no. 1 (average 
sentence length) and no. 2 (percentage of 
long words). Multiply the sum by 0.4. 
Ignore the numbers after the decimal point.

4.	The result is the years of schooling needed 
to understand the passage tested easily. 
Few readers have more than 17 years of 
schooling, so give any passage higher than 
17 a Fog Index of 17-plus.

Adapted from Gunning, R., & Kallan, R. A. (1994). 
How to take the fog out of business writing. 
Chicago, IL: Dartnell. The Fog Index is a service 
mark licensed exclusively to RK Communication 
Consultants by D. and M. Mueller.

Inventory (CRI), which is based on the Flesch, Space, 
Dale, and Fry reading comprehension scales (Flesch 
1984; Silvaroli, 1986). This instrument determines the 
level at which an individual can comprehend written 
material without assistance. Johnson and Rogers 
(2006) described the readability of their MTQ: Pur-
poseful Action as follows.

“Items were worded at approximately a sixth-grade 
reading level, evaluated by using the Flesch-Kincaid 
grade-level assessment program in Microsoft Word 
(2000) (Rasin, 1997). Items ranged from a 1.0 to 6.2 
grade level, with a 3.5 grade level readability score for 
the overall questionnaire.” (Johnson & Rogers, 2006, 
p. 339)

Validity from Factor Analysis
Factor analysis is a valuable approach for determining 
evidence of an instrument’s construct validity. This 
analysis technique is used to determine the various 
dimensions or subcomponents of a phenomenon of 
interest. To employ factor analysis, the instrument 
must be administered to a large, representative sample 
of participants at one time. Usually the data are ini-
tially analyzed with exploratory factor analysis (EFA) 
to examine relationships among the various items of 
the instrument. Items that are closely related are clus-
tered into a factor. The researcher needs to preset the 
minimum loading for an item to be included in a 
factor. The minimum loading is usually set at 0.30 but 
might be as high as 0.50 (Waltz et al., 2010). The 
factors identified are the subcomponents of the con-
struct the instrument was developed to measure. 
Determining and naming the factors identified through 
EFA require detailed work on the part of the researcher. 
The researcher can validate the number of factors or 
subcomponents in the instrument and measurement 
equivalence among comparison groups through the 
use of confirmatory factor analysis (CFA). Items that 
do not fall into a factor (because they do not correlate 
with other items) may be deleted (DeVon et al., 2007; 
Munro, 2005; Stommel, Wang, Given, & Given, 1992; 
Waltz et al., 2010). A more extensive discussion of 
EFA and CFA is presented in Chapter 23.

Johnson and Rogers (2006) conducted an EFA to 
determine the factor structure for their MTQ: Pur-
poseful Action scale. The EFA identifies the specific 
factors or subscales for the scale and the items that fit 
each of these subscales. The original scale had 20 
items sorted into three subscales (labeled perceived 
need, perceived effectiveness, and perceived as safe) 
that are identified in Table 16-2. The EFA and the 
results are presented in Table 16-3 and described as 
follows.



TABLE 16-3	 Principal Axis Factor Analysis with Oblimen Rotation Pattern (and Structure 
in Parentheses) Coefficients for the Medication-Taking Questionnaire:  
Purposeful Action Two-Factor Solution

Factor Loadings Eigen-
value

% Variance 
Explained

Coefficient 
Alpha1 2 h2

Treatment benefits 5.5 45.9 0.90

I need to take my blood pressure 
pills.

0.84 (0.85) (0.34) 0.73

Taking my blood pressure pills is 
not a problem because they 
benefit my health.

0.82 (0.84) (0.35) 0.72

I could have problems if I do not 
take my blood pressure pills.

0.81 (0.84) (0.21) 0.70

Blood pressure pills keep me from 
having health-related problems.

0.81 (0.79) (0.16) 0.63

My blood pressure pills keep me 
from having a stroke.

0.75 (0.75) (0.23) 0.55

I feel better when I take my blood 
pressure pills.

0.74 (0.74) (0.21) 0.55

My blood pressure pills control my 
blood pressure.

0.74 (0.74) (0.26) 0.55

I am OK if I do not take my blood 
pressure pills.*

0.72 (0.71) 0.52

My blood pressure will come 
down enough without pills.*

0.54 (0.48) 0.30

Medication safety 1.9 15.6 0.80

The side effects from my blood 
pressure pills are harmful.*

(0.19) 0.87 (0.86) 0.74

The side effects from my blood 
pressure pills are a problem.*

(0.27) 0.84 (0.86) 0.71

My blood pressure pills cause 
other health problems.*

(0.29) 0.82 (0.83) 0.70

Total 7.4 61.5 0.88

From Johnson, M. J., & Rogers, S. (2006). Development of the Purposeful Action Medication-Taking Questionnaire. Western Journal of Nursing Research, 
28(3), 345.
Note: n = 229.
*Item required reverse coding. Factor loadings in parentheses represent structure coefficients. If patterned or structure coefficient is not listed, the value was 
<0.15.

“Factor analysis is a grouping technique that allows for 
evaluation of the dimensionality of scales (Munro, 2001; 
Nunnally & Bernstein, 1994). A principal axis factoring 
solution with an oblimen rotation, considered the best 
analysis for achieving a theoretical solution uncontami-
nated by unique and random error variability was 
undertaken.…

The EFA yielded two interpretable factors [see Table 
16-3], which eliminated six additional items because of 
factor loadings < 0.40. The first factor merged the need 
and effectiveness items along with one item from the 
Safe subscale. This factor was renamed treatment ben-
efits (benefits). The second factor, renamed medication 
safety (safety), was reduced to three of the original safe 
subscales items.

The Benefits subscale retained nine items that focused 
on the actual perceived benefits of treatment, such as 
preventing a stroke, controlling blood pressure, prevent-
ing further health problems, and feeling better when 
taking medications, which indicated a desire to control 
blood pressure to maintain and promote health and 
well-being. The subscale had an eigenvalue of 5.5 and a 
total item variance explained by the factor of 46%.…

The Safety subscale (three items) focused on side 
effects of medications. This subscale had an eigenvalue 
of 1.9 and a total item variance explained by the factor 
of 16%.… Together, the two factor solution had a coef-
ficient alpha [Cronbach alpha] of 0.87 and an explained 
variance of 62%.” (Johnson & Rogers, 2006, pp. 
343-346)
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Johnson and Rogers (2006) provided a clear, 
concise rationale for the revisions that they made in 
their MTQ: Purposeful Action scale. In this study, the 
revised scale showed internal consistency (Cronbach 
alpha = 0.87) and construct validity obtained through 
content analysis and EFA. Johnson and Rogers (2006, 
p. 348) also conducted CFA that “supported the 
hypothesis that benefits and safety [factors or sub-
scales] underlie the cognitive component of medica-
tion taking in hypertensive medications.”

Validity from Structural Analysis
Structural analysis is used to examine the structure of 
relationships among the various items of an instru-
ment. This approach provides insights beyond that 
provided by factor analysis. Factor analysis deter-
mines what items group together. Structural analysis 
determines how each item is related to other items. 
Structural analysis goes a step beyond factor analysis. 
The exact relationship of each item in a factor is exam-
ined through correlational analyses.

Convergent Validity
In some cases, instruments are available to measure a 
construct, such as depression. However, for many pos-
sible reasons, the existing instruments may be unsat-
isfactory for a particular purpose or a particular 
population, such as measuring major depression in 

young children, and the researcher may choose to 
develop a new instrument for a study. In examining 
the validity of the new instrument, it is important to 
determine how closely the existing instruments 
measure the same construct as the newly developed 
instrument (convergent validity). One can administer 
all of the instruments (the new one and the existing 
ones) to a sample concurrently and evaluate the results 
using correlational analyses. If the measures are highly 
positively correlated, the validity of each instrument 
is strengthened.

Johnson and Rogers (2006) strengthened the valid-
ity of their 12-item MTQ: Purposeful Action scale 
and its subscales (benefit and safety) by correlating 
them with a variety of other instruments (Hamilton 
Health Belief Model Hypertension [HBM] Scale with 
the HBM subscales of Susceptibility, Severity, Bene-
fits, and Barriers; Lifestyle Busyness Questionnaire 
with Busyness and Routine subscales; and Blood 
Pressure Feedback Log). The results of these correla-
tions are presented in Table 16-4. The significant 
positive correlations of 0.3 to 0.63 between the exist-
ing scales (Hamilton HBM Scale with Susceptibility 
and Benefits subscales and the Blood Pressure Feed-
back Log for adherent group) and the MTQ and the 
benefits subscale add to the construct validity of these 
instruments. This is an example of examining conver-
gent validity for this scale, which was strong for the 

TABLE 16-4	 Validity Correlation Coefficients for the Medication-Taking Questionnaire: Purposeful 
Action and Subscales

MTQ: Purposeful Action MTQ Benefit Subscale MTQ Safe Subscale
Hamilton HBM Scalea 0.30** 0.43** −0.12
HBM: Susceptibility subscale 0.36** 0.41** 0.01
HBM: Severity subscale 0.00 0.12 −0.27**
HBM: Benefits subscale 0.58** 0.63** 0.19
HBM: Barriers subscale −0.49** −0.42** −0.41**
Lifestyle Busyness Questionnaireb 0.08 0.11 −0.02
Busyness subscale 0.10 0.13 0.01
Routine subscale −0.07 −0.06 −0.06
Blood Pressure Feedback Logc

  Adherent 0.53** 0.54** 0.25*
  Nonadherent −0.60** −0.50** −0.53**

From Johnson, M. J., & Rogers, S. (2006). Development of the Purposeful Action Medication-Taking Questionnaire. Western Journal of Nursing Research, 
28(3), 347.
HBM, Health Belief Model Hypertension Scale.
an = 107.
bn = 104.
cn = 102.
*p < 0.05, two-tailed.
**p < 0.01, two-tailed.
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MTQ and the benefit subscale but not the safety 
subscale.

Divergent Validity
Sometimes, instruments can be located that measure a 
construct opposite to the construct measured by the 
newly developed instrument (divergent validity). For 
example, if the newly developed instrument measures 
hope, you could search for an instrument that mea-
sures hopelessness or despair. If possible, you could 
administer this instrument and the instruments used to 
test convergent validity at the same time. This approach 
of combining convergent and divergent validity testing 
of instruments is called multitrait-multimethod 
(MT-MM).

The MT-MM approach can be used when research
ers are examining two or more constructs being mea-
sured by two or more measurement methods (DeVon 
et al., 2007). Correlational procedures are conducted 
with the different scales and subscales. If the conver-
gent measures positively correlate and the divergent 
measures negatively correlate with other measures, 
validity for each of the instruments is strengthened. 
Johnson and Rogers (2006) used an MT-MM ap-
proach in examining convergent and divergent valid-
ity related to their MTQ: Purposeful Action. The 
convergent validity findings were discussed in the 
previous section. Table 16-4 shows that the MTQ and 
the subscales benefits and safety were significantly, 
negatively correlated with HBM Barriers subscale 
and the Blood Pressure Feedback Log for nonadher-
ent hypertensive patients. These scales measure the 
opposite construct from the MTQ and its subscales, 
so these significant negative correlations indicated 
that the construct validity was strengthened for these 
instruments. The correlations with the Lifestyle 
Busyness Questionnaire were too low (−0.07 to 0.13) 
to add to the convergent or divergent validity of the 
MTQ: Purposeful Action scale and subscales (see 
Table 16-4).

Validity from Contrasting (or Known) Groups
To test the validity of an instrument, identify groups 
that are expected (or known) to have contrasting 
scores on the instrument. Generate hypotheses about 
the expected response of each of these known groups 
to the construct. Next, select samples from at least  
two groups that are expected to have opposing 
responses to the items in the instrument. Hagerty 
and Patusky (1995) developed a measure called the 
Sense of Belonging Instrument (SOBI). They tested 
the instrument on the following three groups: com-
munity college students, clients diagnosed with major 

depression, and retired Roman Catholic nuns, as 
described in the following excerpt.

“The community college sample was chosen for its 
heterogeneous mix of students and ease of access. 
Depressed clients were included based on the litera-
ture and the researcher’s clinical experience that 
interpersonal relationships and feeling ‘connected’ 
are difficult when one is depressed. It was hypothe-
sized that the depressed group would score signifi-
cantly lower on the SOBI than the student group. The 
nuns were selected to examine the performance of 
the SOBI with a group that, in accordance with the 
theoretical basis of the instrument, should score sig-
nificantly higher than the depressed and student 
groups.” (Hagerty & Patusky, 1995, p. 10)

The nuns had the highest sense of belonging, the 
student groups followed, and the depressed group had 
the lowest sense of belonging. This test increased the 
validity of the instrument in that the scores of groups 
were as anticipated.

Evidence of Validity from  
Discriminant Analysis
Instruments sometimes have been developed to 
measure constructs closely related to the construct 
measured by a newly developed instrument. For 
example, an instrument might exist to measure medi-
cation management in patients with diabetes that is 
similar to the MTQ: Purposeful Action developed by 
Johnson and Rogers (2006) for patients with hyperten-
sion. If such instruments can be located, you can 
strengthen the validity of the MTQ instrument and the 
other medication management instrument by testing 
the extent to which the two instruments can finely 
discriminate between these related concepts. Testing 
of this discrimination involves administering the two 
instruments simultaneously to a sample and perform-
ing a discriminant analysis (see Kerlinger & Lee, 
2000, for a discussion of discriminant analysis).

Validity from Prediction of Future Events and 
Concurrent Events
The ability to predict future performance or attitudes 
on the basis of instrument scores adds to the validity of 
an instrument. Nurse researchers often want to deter-
mine the ability of scales developed to measure selected 
health behaviors to predict the future health status of 
individuals. One approach might be to examine 
reported stress levels of selected individuals in highly 
stressful careers such as nursing and see if stress is 
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linked to the nurses’ future incidence of hypertension. 
If study analysis links stress to future hypertension, 
measuring a nurse’s stress could be used to predict his 
or her future likelihood of becoming hypertensive. For 
example, the validity of the Nursing Stress Scale (NSS) 
could be tested in this manner. French, Lenton, Walters, 
and Eyles (2000) did an expanded evaluation of the 
reliability and validity of the NSS with a random 
sample of 2280 nurses working in a wide range of 
healthcare settings. They noted that the NSS included 
nine subscales: death and dying, conflict with physi-
cians, inadequate preparation, problems with supervi-
sors, workload, problems with peers, uncertainty 
concerning treatment, patients and their families, and 
discrimination. Confirmatory factor analyses sup-
ported the factor structure. Cronbach alpha coefficients 
of eight of the subscales were 0.70 or higher. The NNS 
showed reliability and validity in measuring stress in 
nurses and could be used in a study to determine the 
link to hypertension. The accuracy of predictive valid-
ity is determined through regression analysis.

Validity can be tested by examining the ability to 
predict the current value of one measure on the basis 
of the value obtained on the measure of another 
concept. For example, you might be able to predict the 
self-esteem score of an individual who had a high 
score on an instrument to measure coping. A person 
who received a high score on coping might be expected 
also to have a high self-esteem score. If these results 
held true in a study in which both measures were 
obtained concurrently, the two instruments would 
have evidence of concurrent validity.

Successive Verification of Validity
After the initial development of an instrument, it is 
hoped that other researchers would begin using the 
instrument in additional studies. Each of these studies 
could add to the validity and reliability information on 
the instrument. There is a successive verification of 
the validity of the instrument over time when used in 
a variety of studies with different populations and set-
tings. For example, additional researchers are using 
the MTQ: Purposeful Action in their studies, which 
has the potential to add to the validity of this question-
naire (Lehane & McCarthy, 2007).

Accuracy, Precision, and Error of 
Physiological Measures
Accuracy and precision of physiological and biochem-
ical measures tend not to be reported in published 
studies. These routine physiological measures are 

assumed to be accurate and precise, an assumption 
that is not always correct. The most common physi-
ological measures used in nursing studies are blood 
pressure, heart rate, weight, and temperature. These 
measures are often obtained from the patient’s record 
with no consideration given to their accuracy. It is 
important to consider the possibility of differences 
between the obtained value and the true value of phys-
iological measures. Thus, researchers using physio-
logical measures need to provide evidence of the 
accuracy and precision of their measures (Ryan-
Wenger, 2010).

The evaluation of physiological measures may 
require a slightly different perspective from that 
applied to behavioral measures, in that standards for 
most biophysical measures are defined by national and 
international organizations such as the International 
Organization of Standardization (IOS) (2011a) and the 
Clinical Laboratory Standards Institute (CLSI) (2011). 
CLSI develops standards for laboratory and other 
healthcare-related biophysical measures. The IOS is 
the world’s largest developer and publisher of interna-
tional standards and includes a network of 160 coun-
tries (see IOS website for details at http://www.iso.org/
iso/home.htm). The ISO standards were developed to 
accomplish the following:
•	 Make the development, manufacturing, and supply 

of products and services more efficient, safer, and 
cleaner

•	 Facilitate trade between countries and make it 
fairer

•	 Provide governments with a technical base for 
health, safety, and environmental legislation and 
conformity assessment

•	 Share technological advances and good manage-
ment practice

•	 Disseminate innovations
•	 Safeguard consumers and users in general of prod-

ucts and services
•	 Make life simpler by providing solutions to 

common problems (ISO, 2011b)
You can locate the standards for different biophysi-

cal equipment, products, or services that you might 
use in a study or in clinical practice. Within IOS, the 
Joint Committee for Guides in Metrology (JCGM) has 
two major areas of focus: (1) Guide to the Expression 
of Uncertainty in Measurement (GUM) and (2) Inter-
national Vocabulary of Basic and General Terms in 
Metrology (VIM) (JCGM, 2011). VIM is a document 
that standardizes terminology related to biophysical 
measurements, such as accuracy, precision, error, sen-
sitivity, specificity, and likelihood ratio that are 
described in this section.
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researcher must choose instruments that have selectiv-
ity for the dimension being studied. For example, elec-
trocardiographic readings allow one to differentiate 
electrical signals coming from the myocardium from 
similar signals coming from skeletal muscles.

To determine the accuracy of biochemical mea-
sures, review the standards set by CLSI (2011) and 
determine if the laboratory where the measures are 
going to be obtained is certified. Most laboratories are 
certified, so researchers could contact experts in the 
agency on the laboratory procedure and ask them to 
describe the process for collection, analysis, and 
values obtained for specimens. You might also ask 
these experts to judge the appropriateness of the bio-
physical device for the construct being measured in 
the study. Use contrasted groups’ techniques by select-
ing a group of subjects known to have high values on 
the biochemical measures and comparing them with a 
group of subjects known to have low values on the 
same measure. In addition, to obtain concurrent valid-
ity, compare the results of the test with results from 
the use of a known standard (CLSI, 2011), such as the 
example of the comparison of pulse oximeter values 
with blood gas values for oxygen saturation.

Precision
Precision is the degree of consistency or reproduc-
ibility of measurements made with physiological 
instruments or devices. There should be close agree-
ment in the replicated measures of the same variable 
or object under specified conditions (Ryan-Wenger, 
2010). Precision is similar to reliability. The precision 
of most physiological devices or equipment is deter-
mined by the manufacturer and is part of quality 
control testing done in the agency using the device. 
Similar to accuracy, precision depends on the collector 
of the biophysical measures and the consistency of the 
measurement equipment or device. The protocol for 
collecting the biophysical measures improves preci-
sion and accuracy (see the previous example of pro-
tocol to measure BP).

The data collectors need to be trained to ensure 
consistency, which is documented with intrarater 
(within a single data collector) and interrater (among 
data collectors) percentages of agreements. The kappa 
coefficient of agreement is one of the most common 
and simplest statistics to determine intrarater and 
interrater accuracy and precision for nominal level 
data (Cohen, 1960; Ryan-Wenger, 2010). The equip-
ment and devices used to measure physiological vari-
ables need to be maintained according to the standards 
set by IOS and the manufacturers of the devices. Many 
devices need to be recalibrated according to set criteria 

Accuracy
Accuracy involves determining the closeness of the 
agreement between the measured value and the true 
value of the quantity being measured (JCGM, 2011). 
Accuracy is similar to validity, in which evidence of 
content-related validity addresses the extent to which 
the instrument measured the construct or domain 
defined in the study. New measurement devices are 
compared with existing standardized methods of mea-
suring a biophysical property or concept. For example, 
measures of oxygen saturation with a pulse oximeter 
were correlated with arterial blood gas measures of 
oxygen saturation to determine the accuracy of the 
pulse oximeter. Thus, there should be a very strong, 
positive correlation (≥0.95) between pulse oximeter 
and blood gas measures of oxygen saturation to 
support the accuracy of the pulse oximeter (CLSI, 
2011).

Accuracy of physiological measures depends on 
the (1) quality of the measurement equipment or 
device, (2) detail of the data collection plan, and (3) 
expertise of the data collector (Ryan-Wenger, 2010). 
The data collector or person conducting the biophysi-
cal measures must do the measurements in a standard-
ized way that is usually directed by a measurement 
protocol. For example, BP readings in a study need to 
be taken using a protocol: (1) place the subject in a 
chair and allow 5 minutes of rest; (2) remove restric-
tive clothing from the subject’s arm; (3) measure the 
subject’s upper arm and select the appropriate cuff 
size; (4) instruct the subject to place his or her feet flat 
on the floor; (5) support the subject’s arm when taking 
the BP reading; and (6) take three BP readings each 5 
minutes apart, average the readings, and enter the 
averaged BP reading into a computer. Some measure-
ments, such as arterial pressure, can be obtained by 
the biomedical device producing the reading and auto-
matically recorded in a computerized database. This 
type of data collection greatly reduces the potential for 
error and increases accuracy and precision.

The biomedical device or equipment used to 
measure a study variable must be examined for accu-
racy. Researchers need to document the extent to 
which the biophysical measure is an accurate mea-
surement of a study variable and the level of error 
expected. Reviewing the ISO (2011b) and CLSI 
(2011) standards could provide essential accuracy 
information and information about the company that 
developed the device or equipment.

Selectivity, an element of accuracy, is “the ability 
to identify correctly the signal under study and to 
distinguish it from other signals” (Gift & Soeken, 
1988, p. 129). Because body systems interact, the 
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subject. In some cases, the machine may not be used 
to its full capacity. Machine error may be related to 
calibration or to the stability of the machine. Signals 
transmitted from the machine are also a source of error 
and can cause misinterpretation (Ryan-Wenger, 2010).

Sources of error in biochemical measures are bio-
logical, preanalytical, analytical, and postanalytical. 
Biological variability in biochemical measures is due 
to factors such as age, gender, and body size. Vari-
ability in the same individual is due to factors such as 
diurnal rhythms, seasonal cycles, and aging. Preana-
lytical variability is due to errors in collecting and 
handling of specimens. These errors include sampling 
the wrong patients; using an incorrect container, pre-
servative, or label; lysis of cells; and evaporation. 
Preanalytical variability may also be due to patient 
intake of food or drugs, exercise, or emotional stress. 
Analytical variability is associated with the method 
used for analysis and may be due to materials, equip-
ment, procedures, and personnel used. The major 
source of postanalytical variability is transcription 
error. This source of error can be greatly reduced by 
entering data into the computer directly (DeKeyser & 
Pugh, 1990).

When the scores obtained in a study are at the 
interval or ratio level, a commonly used method of 
evaluating precision and accuracy errors is the Bland-
Altman chart (Bland & Altman, 1986). This chart is a 
scatter plot of the differences between observed scores 
on the Y-axis and the combined mean of the two 
methods on the X-axis. The distribution of the differ-
ence scores is examined in context of the limits of 
agreement that are drawn as a horizontal line across 
the chart or scatter plot (see Chapter 23). The limits 
are set by the researchers and might include 1 or 2 
standard deviations from the mean or might be the 
clinical standards of the maximum amount of error 
that is safe. The data points are examined for level of 
agreement (congruence) and for level of bias (system-
atic error). Outliers are readily visible from the chart, 
and each outlier case should be examined to identify 
the cause of such a large discrepancy. Clinical labora-
tory standards indicate that “more than 3 outliers per 
100 observations suggest there are major flaws in the 
measurement system” (Ryan-Wenger, 2010, p. 381).

Schell et al. (2011) conducted a study to compare 
upper arm and calf automatic noninvasive BPs in chil-
dren in a pediatric intensive care unit (PICU). The 
researchers documented the accuracy of their BP mon-
itoring equipment, training of their data collectors, and 
the procedures for taking the BPs in their study. The 
errors in precision and accuracy are documented with 
Bland-Altman charts for systolic BP, diastolic BP, and 

to ensure consistency in measurements. Because of 
fluctuations in some physiological measures, test-
retest reliability might be inappropriate.

Two procedures are commonly used to determine 
the precision of biochemical measures. One is the 
Levy-Jennings chart. For each analysis method, a 
control sample is analyzed daily for 20 to 30 days. The 
control sample contains a known amount of the sub-
stance being tested. The mean, the standard deviation, 
and the known value of the sample are used to prepare 
a graph of the daily test results. Only 1 value of 22 is 
expected to be greater than or less than 2 standard 
deviations from the mean. If two or more values are 
more than 2 standard deviations from the mean, the 
method is unreliable in that laboratory. Another 
method of determining the precision of biochemical 
measures is the duplicate measurement method. The 
same technician performs duplicate measures on ran-
domly selected specimens for a specific number of 
days. The results are essentially the same each day if 
there is high precision. Results are plotted on a graph, 
and the standard deviation is calculated on the basis 
of difference scores. The use of correlation coeffi-
cients is not recommended (DeKeyser & Pugh, 1990).

Sensitivity
Sensitivity of physiological measures relates to “the 
amount of change of a parameter that can be measured 
precisely” (Gift & Soeken, 1988, p. 130). If changes 
are expected to be small, the instrument must be very 
sensitive to detect the changes. Thus, sensitivity is 
associated with effect size (see Chapter 15). With 
some instruments, sensitivity may vary at the ends of 
the spectrum. This is referred to as the frequency 
response. The stability of the instrument is also related 
to sensitivity. This feature may be judged in terms of 
the ability of the system to resume a steady state after 
a disturbance in input. For electrical systems, this 
feature is referred to as freedom from drift (Gift & 
Soeken, 1988).

Error
Sources of error in physiological measures can be 
grouped into the following five categories: environ-
ment, user, subject, machine, and interpretation. The 
environment affects both the machine and the subject. 
Environmental factors include temperature, baromet-
ric pressure, and static electricity. User errors are 
caused by the person using the instrument and may be 
associated with variations by the same user, different 
users, changes in supplies, or procedures used to 
operate the equipment. Subject errors occur when the 
subject alters the machine or the machine alters the 
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mean arterial pressure readings. The chart of the sys-
tolic BP is included as an example in Figure 16-10. 
This study was conducted to determine an alternative 
method of obtaining BP when the injuries of the child 
prevent BP readings using the upper arm.

Schell et al. (2011) provided evidence of the accu-
racy, precision, and error of the BP monitoring equip-
ment used in their study. They also provided a detailed 
discussion of the procedures for data collection that 
followed a rigorous protocol to ensure accurate and 
precise BP readings were obtained for all ages of chil-
dren based on their measured arm and calf sizes. The 
data collectors were trained in BP monitoring by the 
Spacelab representative, which would increase their 
expertise in the use of the equipment. However, the 
study would have been strengthened by a discussion 
of the intrarater and interrater percentage of agreement 
for the data collectors. The use of the Bland-Altman 
plot to identify the error in precision and accuracy for 
systolic BPs, diastolic BPs, and mean arterial pres-
sures added to the credibility of the findings. The 
researchers found that the arm and calf BPs were not 
interchangeable for many of the children 1 to 8 years 
old. “Clinical BP differences were the greatest in chil-
dren between ages 2 and less than 5 years. Calf BPs 
are not recommended for this population. If the calf is 
unavoidable due to medical reasons, trending of BP 

“BP Monitor

“BP was obtained using a Spacelabs Ultraview SL 
monitoring system (Spacelabs Healthcare, Issaquah, 
WA), which consists of hemodynamic parameter 
modules that can be inserted into stationary bedside 
and portable monitor housings. All monitoring func-
tions were controlled through the modules. During 
data collection, each set of arm and calf BP measure-
ments was obtained simultaneously using two identi-
cal parameter modules: one inserted into the subject’s 
stationary bedside housing and the other inserted in 
to a portable monitor housing brought to the sub-
ject’s bedside. Modules and housings are inspected 
and tested annually by Biomedical Support Services 
to ensure accurate functioning. The accuracy of these 
monitors for arm BPs meets or exceeds SP10-1992 
Association for the Advancement of Medical Instru-
mentation standards (mean error = ±4.5 mm Hg, SD 
= ±7.3 mm Hg) for arm measurements (White et al., 
1993). Spacelabs Healthcare did not report data 
regarding accuracy of calf BPs.

“Training of Data Collectors

“Data were collected by five pediatric intensive care 
nurses who attended a data training session that 
addressed location of arm and calf sites, measure-
ment of limb circumference, and use of the RASS 
[Richmond Agitation Sedation Scale]. The nurses also 
attended a BP monitor in-service offered by the 
Spacelab representative when the monitors were 
adopted in the PICU in January 2006.…

“Procedure

“Subjects were placed in a supine position with the 
head of bed elevated 30° as determined by a handheld 
protractor or the degree indicator incorporated into 
the bed frame. Subjects remained in this position for 
at least 5 minutes prior to data collection. Cuff sizes 
were selected based on limb circumferences mea-
sured to the nearest 0.5 cm. Spacelabs cuff sizes were 
as follows: neonate, 6-11 cm; infant, 8-11 cm; child, 
12-19 cm; small adult, 17-26 cm; and adult, 24-32 cm. 
Per manufacturer’s recommendations, if circumfer-
ence overlapped two categories of cuff size, the 

larger cuff was selected. Using a paper tape measure, 
arm circumference was obtained at the point halfway 
between the elbow and the shoulder. Calf circumfer-
ence was measured at the point midway between the 
ankle and the knee. The BP cuffs were applied to the 
arm and calf on the same side. Subjects’ extremities 
were positioned at the side of their bodies, resting on 
the bed, for all measurements.… Systolic, diastolic, 
and mean BP values for the arm and calf as well as a 
simultaneous heart rate were documented. Data col-
lectors notified the child’s nurse or physician if an 
abnormal arm reading was obtained.” (Schell et al., 
2011, pp. 6-7)

“To promote best practice, clinicians should base 
treatment choices on individual patient data, not 
group data. Therefore, Bland-Altman analyses were 
used to determine agreement between arm and calf 
oscillometric BPs for individual subjects. Perfect 
agreement occurs when all data points lie on the line 
of equality of the X-axis. The bias (mean difference 
between arm and calf pressures) systolic BP was 
8.0 mm Hg with the limits of agreement −18.9 and 
34.9 mm Hg. Limits of agreement indicated that 95% 
of the sample falls between these values [see Figure 
16-10]. The limits of agreement for diastolic BP were 
−22.7 and 25.0 mm Hg with a bias of 1.1 mm Hg.” 
(Schell et al., 2011, p. 9)
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Figure 16-10  Bland-Altman plot of systolic BP. (From Schell, K., 
Briening, E., Lebet, R., Pruden, K., Rawheiser, S., & Jackson, B. [2011]. 
Comparison of arm and calf automatic noninvasive blood pressures in 
pediatric intensive care patients. Journal of Pediatric Nursing, 26[1], 9.)
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from this site should remain consistent during the 
child’s stay” (Schell et al., 2011, p. 10).

& Haynes, 2000). When you order a diagnostic test, 
how can you be sure that the results are valid or accu-
rate? This question is best answered by current, quality 
research to determine the sensitivity and specificity of 
the test.

Sensitivity and Specificity
The accuracy of a screening test or a test used to 
confirm a diagnosis is evaluated in terms of its ability 
to assess correctly the presence or absence of a disease 
or condition as compared with a gold standard. The 
gold standard is the most accurate means of currently 
diagnosing a particular disease and serves as a basis 
for comparison with newly developed diagnostic or 
screening tests (Campo, Shiyko, & Lichtman, 2010). 
If the test is positive, what is the probability that the 
disease is present? If the test is negative, what is the 
probability that the disease is not present? When you 
talk to the patient about the results of their tests, how 
sure are you that they do or do not have the disease? 
Sensitivity and specificity are the terms used to 
describe the accuracy of a screening or diagnostic test 
(Table 16-5). There are four possible outcomes of a 
screening test for a disease: (1) true positive, which 
accurately identifies the presence of a disease; (2) false 
positive, which indicates a disease is present when it 
is not; (3) true negative, which indicates accurately 
that a disease is not present; or (4) false negative, 
which indicates that a disease is not present when it is 
(Campo et al., 2010; Grove, 2007). The 2 × 2 contin-
gency table shown in Table 16-5 should help you to 
visualize sensitivity and specificity and these four out-
comes (Craig & Smyth, 2012; Sackett et al., 2000).

Sensitivity and specificity can be calculated based 
on research findings and clinical practice outcomes to 
determine the most accurate diagnostic or screening 
tool to use in identifying the presence or absence of a 
disease for a population of patients. The calculations 
for sensitivity and specificity are provided as follows:

TABLE 16-5	 Results of Sensitivity and Specificity of Screening Tests

Diagnostic Test Result Disease Present Disease Not Present or Absent Total
Positive test a (true positive) b (false positive) a + b
Negative test c (false negative) d (true negative) c + d
Total a + c b + d a + b + c + d

From Grove, S. K. (2007). Statistics for health care research: A practical workbook. Philadelphia, PA: Saunders, p. 335.
a = The number of people who have the disease and the test is positive (true positive).
b = The number of people who do not have the disease and the test is positive (false positive).
c = The number of people who have the disease and the test is negative (false negative).
d = The number of people who do not have the disease and the test is negative (true negative).

Sensitivity, Specificity, and 
Likelihood Ratios
An important part of building evidence-based practice 
(EBP) is the development, refinement, and use of 
quality diagnostic tests and measures in research and 
practice. Researchers want to use the most accurate 
and precise measure or test in their study to promote 
quality outcomes. If a quality diagnostic test does not 
exist, some nurses have participated in the develop-
ment and refinement of new biophysical tests. Clini-
cians want to know what diagnostic test, such as 
laboratory or imaging study, to order to help screen 
for and accurately determine the absence or presence 
of an illness (Sackett, Straus, Richardson, Rosenberg, 
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Sensitivity calculation = probability of disease
= a/(a + c)
= truee positive rate

Specificity calculation = probability of disease
= d/(b + d)
= truee negative rate

Sensitivity is the proportion of patients with the 
disease who have a positive test result or true positive. 
The ways the researcher or clinician might refer to the 
test sensitivity include the following:
•	 Highly sensitive test is very good at identifying the 

patient with a disease.
•	 If a test is highly sensitive, it has a low percentage 

of false negatives.
•	 Low sensitivity test is limited in identifying the 

patient with a disease.
•	 If a test has low sensitivity, it has a high percentage 

of false negatives.
•	 If a sensitive test has negative results, the patient 

is less likely to have the disease.
•	 Use the acronym SnNout: High sensitivity (Sn), test 

is negative (N), rules the disease out (out) (Campo 
et al., 2010; Grove, 2007).
Specificity of a screening or diagnostic test is the 

proportion of patients without the disease who have a 
negative test result or true negative. The ways the 
researcher or clinician might refer to the test specific-
ity include the following:
•	 Highly specific test is very good at identifying 

patients without a disease.
•	 If a test is very specific, it has a low percentage of 

false positives.
•	 Low specificity test is limited in identifying patients 

without a disease.
•	 If a test has low specificity, it has a high percentage 

of false positives.
•	 If a specific test has positive results, the patient is 

more likely to have the disease.

“We conducted a study to define the sensitivity and 
specificity of RADT, using throat culture results as the 
gold standard, in 100 emergency department patients 
who presented with symptoms consistent with strep-
tococal pharyngitis. We found that RADT had a sen-
sitivity of 68.2% (15 of 22), a specificity of 89.7% (70 
of 78), a positive predictive value of 65.2% (15 of 23), 
and a negative predictive value of 90.9% (70 of 77). 
We conclude that RADT is useful in the emergency 
department when the clinical suspicion is GABHS, but 
results should be confirmed with a throat culture in 
patients whose RADT results are negative.” (Sarikaya 
et al., 2010, p. 180)

•	 Use the acronym SpPin: High specificity (Sp), test 
is positive (P), rules the disease in (in).
Sarikaya, Aktas, Ay, Cetin, and Celikmen (2010) 

conducted a study to determine the sensitivity and 
specificity of rapid antigen diagnostic testing (RADT) 
for diagnosing pharyngitis in patients in the emer-
gency department. Acute pharyngitis is primarily a 
viral infection, but in 10% of the cases it is caused by 
bacteria. Most cases of bacterial pharyngitis are caused 
by group A beta-hemolytic streptococci (GABHS). 
One laboratory method for diagnosing GABHS is 
RADT, which has become more popular than a throat 
culture because it can be processed rapidly during an 
emergency department and primary care visit.

TABLE 16-6	 Results of Sensitivity and Specificity of Rapid Antigen Diagnostic Testing (RADT)

RADT Result GABHS Disease Present GABHS Disease Absent Total
Positive test a (true positive) = 15 b (false positive) = 8 a + b = 15 + 8 = 23
Negative test c (false negative) = 7 d (true negative) = 70 c + d = 7 + 70 = 77
Total a + c = 15 + 7 = 22 b + d = 8 + 70 = 78 a + b + c + d = 100

GABHS, Group A beta-hemolytic streptococci.
a = The number of people who have GABHS pharyngitis disease and the test is positive (true positive).
b = The number of people who do not have GABHS pharyngitis disease and the test is positive (false positive).
c = The number of people who have GABHS pharyngitis disease and the test is negative (false negative).
d = The number of people who do not have GABHS pharyngitis disease and the test is negative (true negative).

The results of the study by Sarikaya et al. (2010) 
were put into Table 16-6 so that you might see how 
the sensitivity and specificity were calculated in this 
study.

Sensitivity calculation probability of disease
a/ a c tru

=
= + =( ) ee positive rate

Sensitivity probability of GABHS pharyngitis
15/

=
= + =( ) /15 7 15 222 68 18 68 2= =. % . %
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to read clinical studies and to determine the most 
accurate diagnostic test to use in research and clinical 
practice.

KEY POINTS

•	 Measurement is the process of assigning numbers 
to objects, events, or situations in accord with some 
rule.

•	 Instrumentation is the application of specific rules 
to develop a measurement device or instrument.

•	 Measurement theory and the rules within this 
theory have been developed to direct the measure-
ment of abstract and concrete concepts.

•	 There is direct measurement and indirect measure-
ment.

•	 Healthcare technology has made researchers famil-
iar with direct measures of concrete elements, such 
as height, weight, heart rate, temperature, and 
blood pressure.

•	 Indirect measurement is used with abstract con-
cepts, when the concepts are not measured directly, 
but when the indicators or attributes of the concepts 
are used to represent the abstraction. Common 
abstract concepts measured in nursing include 
anxiety, stress, coping, quality of life, and pain.

•	 Measurement error is the difference between what 
exists in reality and what is measured by a research 
instrument.

•	 The levels of measurement, from lower to higher, 
are nominal, ordinal, interval, and ratio.

•	 Reliability refers to how consistently the measure-
ment technique measures the concept of interest 
and includes stability reliability, equivalence reli-
ability, and internal consistency.

•	 The validity of an instrument is determined by 
the extent to which the instrument actually  
reflects the abstract construct being examined and 
includes such types as face and content validity, 
validity from factor analysis, validity from struc-
tural analysis, convergent validity, divergent valid-
ity, validity from contrasting groups, validity from 
discriminant analysis, validity from prediction of 
future and concurrent events, and successive veri-
fication validity.

•	 Evaluation of physiological measures requires a 
different perspective from that of behavioral mea-
sures and requires evaluation for accuracy, preci-
sion, and error.

•	 The accuracy of screening or diagnostic tests is 
determined by calculating the sensitivity, specific-
ity, and likelihood ratios for the test.

Specificity calculation probability of disease
d/ b d tru

=
= + =( ) ee negative rate

Specificity probability no GABHS pharyngitis
/ /

=
= + =70 8 70 70( ) 778 89 74 89 7= =. % . %

The sensitivity of 68.2% indicates the percentage 
of patients with a positive RADT who had GABHS 
pharyngitis (true positive rate). The specificity of 
89.7% indicates the percentage of patients with a 
negative RADT who did not have GABHS pharyngitis 
(true negative rate). In developing a diagnostic or 
screening test, researchers need to achieve the highest 
sensitivity and specificity possible. In selecting screen-
ing tests to diagnose illnesses, clinicians need to deter-
mine the most sensitive and specific screening test but 
also need to examine cost and ease of access to these 
tests in making their final decision (Craig & Smyth, 
2012; Grove, 2007; Sackett et al., 2000).

Likelihood Ratios
Likelihood ratios (LRs) are additional calculations 
that can help researchers to determine the accuracy of 
diagnostic or screening tests, which are based on the 
sensitivity and specificity results. LRs are calculated 
to determine the likelihood that a positive test result 
is a true positive and a negative test result is a true 
negative. The ratio of the true positive results to false 
positive results is known as the positive LR (Campo 
et al., 2010). The positive LR is calculated as follows 
using the data from the study by Sarikaya et al. (2010):

Positive LR sensitivity 100% specificity== --÷

Positive LR for GABHS pharyngitis
= ÷ − = ÷68 2 100 89 7 68 2 1. % % . % . % 00 3 6 62. % .=

The negative LR is the ratio of true negative 
results to false negative results, and it is calculated  
as follows:

Negative LR 100% sensitivity specificity== − ÷

Negative LR for GABHS pharyngitis
= − ÷ = ÷100 68 2 89 7 31 8 8% . % . % . % 99 7 0 35. % .=

The very high LRs (or LRs that are >10) rule in the 
disease or indicate that the patient has the disease. The 
very low LRs (or LRs that are <0.1) virtually rule out 
the chance that the patient has the disease (Campo 
et al., 2010; Craig & Smyth, 2012; Melnyk & Fineout-
Overholt, 2011; Sackett et al., 2000). Understanding 
sensitivity, specificity, and LR increases your ability 
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