
1.1 Preliminary Remarks Fluid mechanics is the study of fluids either in motion (fluid dynamics) or at rest (fluid
statics) and the subsequent effects of the fluid upon the boundaries, which may be ei-
ther solid surfaces or interfaces with other fluids. Both gases and liquids are classified
as fluids, and the number of fluids engineering applications is enormous: breathing,
blood flow, swimming, pumps, fans, turbines, airplanes, ships, rivers, windmills, pipes,
missiles, icebergs, engines, filters, jets, and sprinklers, to name a few. When you think
about it, almost everything on this planet either is a fluid or moves within or near a
fluid.

The essence of the subject of fluid flow is a judicious compromise between theory
and experiment. Since fluid flow is a branch of mechanics, it satisfies a set of well-
documented basic laws, and thus a great deal of theoretical treatment is available. How-
ever, the theory is often frustrating, because it applies mainly to idealized situations
which may be invalid in practical problems. The two chief obstacles to a workable the-
ory are geometry and viscosity. The basic equations of fluid motion (Chap. 4) are too
difficult to enable the analyst to attack arbitrary geometric configurations. Thus most
textbooks concentrate on flat plates, circular pipes, and other easy geometries. It is pos-
sible to apply numerical computer techniques to complex geometries, and specialized
textbooks are now available to explain the new computational fluid dynamics (CFD)
approximations and methods [1, 2, 29].1 This book will present many theoretical re-
sults while keeping their limitations in mind.

The second obstacle to a workable theory is the action of viscosity, which can be
neglected only in certain idealized flows (Chap. 8). First, viscosity increases the diffi-
culty of the basic equations, although the boundary-layer approximation found by Lud-
wig Prandtl in 1904 (Chap. 7) has greatly simplified viscous-flow analyses. Second,
viscosity has a destabilizing effect on all fluids, giving rise, at frustratingly small ve-
locities, to a disorderly, random phenomenon called turbulence. The theory of turbu-
lent flow is crude and heavily backed up by experiment (Chap. 6), yet it can be quite
serviceable as an engineering estimate. Textbooks now present digital-computer tech-
niques for turbulent-flow analysis [32], but they are based strictly upon empirical as-
sumptions regarding the time mean of the turbulent stress field.
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1.2 The Concept of a Fluid

Thus there is theory available for fluid-flow problems, but in all cases it should be
backed up by experiment. Often the experimental data provide the main source of in-
formation about specific flows, such as the drag and lift of immersed bodies (Chap. 7).
Fortunately, fluid mechanics is a highly visual subject, with good instrumentation [4,
5, 35], and the use of dimensional analysis and modeling concepts (Chap. 5) is wide-
spread. Thus experimentation provides a natural and easy complement to the theory.
You should keep in mind that theory and experiment should go hand in hand in all
studies of fluid mechanics.

From the point of view of fluid mechanics, all matter consists of only two states, fluid
and solid. The difference between the two is perfectly obvious to the layperson, and it
is an interesting exercise to ask a layperson to put this difference into words. The tech-
nical distinction lies with the reaction of the two to an applied shear or tangential stress.
A solid can resist a shear stress by a static deformation; a fluid cannot. Any shear
stress applied to a fluid, no matter how small, will result in motion of that fluid. The
fluid moves and deforms continuously as long as the shear stress is applied. As a corol-
lary, we can say that a fluid at rest must be in a state of zero shear stress, a state of-
ten called the hydrostatic stress condition in structural analysis. In this condition, Mohr’s
circle for stress reduces to a point, and there is no shear stress on any plane cut through
the element under stress.

Given the definition of a fluid above, every layperson also knows that there are two
classes of fluids, liquids and gases. Again the distinction is a technical one concerning
the effect of cohesive forces. A liquid, being composed of relatively close-packed mol-
ecules with strong cohesive forces, tends to retain its volume and will form a free sur-
face in a gravitational field if unconfined from above. Free-surface flows are domi-
nated by gravitational effects and are studied in Chaps. 5 and 10. Since gas molecules
are widely spaced with negligible cohesive forces, a gas is free to expand until it en-
counters confining walls. A gas has no definite volume, and when left to itself with-
out confinement, a gas forms an atmosphere which is essentially hydrostatic. The hy-
drostatic behavior of liquids and gases is taken up in Chap. 2. Gases cannot form a
free surface, and thus gas flows are rarely concerned with gravitational effects other
than buoyancy.

Figure 1.1 illustrates a solid block resting on a rigid plane and stressed by its own
weight. The solid sags into a static deflection, shown as a highly exaggerated dashed
line, resisting shear without flow. A free-body diagram of element A on the side of the
block shows that there is shear in the block along a plane cut at an angle ! through A.
Since the block sides are unsupported, element A has zero stress on the left and right
sides and compression stress " # $ p on the top and bottom. Mohr’s circle does not
reduce to a point, and there is nonzero shear stress in the block.

By contrast, the liquid and gas at rest in Fig. 1.1 require the supporting walls in or-
der to eliminate shear stress. The walls exert a compression stress of $ p and reduce
Mohr’s circle to a point with zero shear everywhere, i.e., the hydrostatic condition. The
liquid retains its volume and forms a free surface in the container. If the walls are re-
moved, shear develops in the liquid and a big splash results. If the container is tilted,
shear again develops, waves form, and the free surface seeks a horizontal configura-
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tion, pouring out over the lip if necessary. Meanwhile, the gas is unrestrained and ex-
pands out of the container, filling all available space. Element A in the gas is also hy-
drostatic and exerts a compression stress $ p on the walls.

In the above discussion, clear decisions could be made about solids, liquids, and
gases. Most engineering fluid-mechanics problems deal with these clear cases, i.e., the
common liquids, such as water, oil, mercury, gasoline, and alcohol, and the common
gases, such as air, helium, hydrogen, and steam, in their common temperature and pres-
sure ranges. There are many borderline cases, however, of which you should be aware.
Some apparently “solid” substances such as asphalt and lead resist shear stress for short
periods but actually deform slowly and exhibit definite fluid behavior over long peri-
ods. Other substances, notably colloid and slurry mixtures, resist small shear stresses
but “yield” at large stress and begin to flow as fluids do. Specialized textbooks are de-
voted to this study of more general deformation and flow, a field called rheology [6].
Also, liquids and gases can coexist in two-phase mixtures, such as steam-water mix-
tures or water with entrapped air bubbles. Specialized textbooks present the analysis
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1.3 The Fluid as a Continuum

of such two-phase flows [7]. Finally, there are situations where the distinction between
a liquid and a gas blurs. This is the case at temperatures and pressures above the so-
called critical point of a substance, where only a single phase exists, primarily resem-
bling a gas. As pressure increases far above the critical point, the gaslike substance be-
comes so dense that there is some resemblance to a liquid and the usual thermodynamic
approximations like the perfect-gas law become inaccurate. The critical temperature
and pressure of water are Tc # 647 K and pc # 219 atm,2 so that typical problems in-
volving water and steam are below the critical point. Air, being a mixture of gases, has
no distinct critical point, but its principal component, nitrogen, has Tc # 126 K and
pc # 34 atm. Thus typical problems involving air are in the range of high temperature
and low pressure where air is distinctly and definitely a gas. This text will be concerned
solely with clearly identifiable liquids and gases, and the borderline cases discussed
above will be beyond our scope.

We have already used technical terms such as fluid pressure and density without a rig-
orous discussion of their definition. As far as we know, fluids are aggregations of mol-
ecules, widely spaced for a gas, closely spaced for a liquid. The distance between mol-
ecules is very large compared with the molecular diameter. The molecules are not fixed
in a lattice but move about freely relative to each other. Thus fluid density, or mass per
unit volume, has no precise meaning because the number of molecules occupying a
given volume continually changes. This effect becomes unimportant if the unit volume
is large compared with, say, the cube of the molecular spacing, when the number of
molecules within the volume will remain nearly constant in spite of the enormous in-
terchange of particles across the boundaries. If, however, the chosen unit volume is too
large, there could be a noticeable variation in the bulk aggregation of the particles. This
situation is illustrated in Fig. 1.2, where the “density” as calculated from molecular
mass %m within a given volume %! is plotted versus the size of the unit volume. There
is a limiting volume %!* below which molecular variations may be important and
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1.4 Dimensions and Units

above which aggregate variations may be important. The density & of a fluid is best
defined as

& # lim
%!→%!*

'
%
%
!
m
' (1.1)

The limiting volume %!* is about 10$ 9 mm3 for all liquids and for gases at atmospheric
pressure. For example, 10$ 9 mm3 of air at standard conditions contains approximately
3 ( 107 molecules, which is sufficient to define a nearly constant density according to
Eq. (1.1). Most engineering problems are concerned with physical dimensions much larger
than this limiting volume, so that density is essentially a point function and fluid proper-
ties can be thought of as varying continually in space, as sketched in Fig. 1.2a. Such a
fluid is called a continuum, which simply means that its variation in properties is so smooth
that the differential calculus can be used to analyze the substance. We shall assume that
continuum calculus is valid for all the analyses in this book. Again there are borderline
cases for gases at such low pressures that molecular spacing and mean free path3 are com-
parable to, or larger than, the physical size of the system. This requires that the contin-
uum approximation be dropped in favor of a molecular theory of rarefied-gas flow [8]. In
principle, all fluid-mechanics problems can be attacked from the molecular viewpoint, but
no such attempt will be made here. Note that the use of continuum calculus does not pre-
clude the possibility of discontinuous jumps in fluid properties across a free surface or
fluid interface or across a shock wave in a compressible fluid (Chap. 9). Our calculus in
Chap. 4 must be flexible enough to handle discontinuous boundary conditions.

A dimension is the measure by which a physical variable is expressed quantitatively.
A unit is a particular way of attaching a number to the quantitative dimension. Thus
length is a dimension associated with such variables as distance, displacement, width,
deflection, and height, while centimeters and inches are both numerical units for ex-
pressing length. Dimension is a powerful concept about which a splendid tool called
dimensional analysis has been developed (Chap. 5), while units are the nitty-gritty, the
number which the customer wants as the final answer.

Systems of units have always varied widely from country to country, even after in-
ternational agreements have been reached. Engineers need numbers and therefore unit
systems, and the numbers must be accurate because the safety of the public is at stake.
You cannot design and build a piping system whose diameter is D and whose length
is L. And U.S. engineers have persisted too long in clinging to British systems of units.
There is too much margin for error in most British systems, and many an engineering
student has flunked a test because of a missing or improper conversion factor of 12 or
144 or 32.2 or 60 or 1.8. Practicing engineers can make the same errors. The writer is
aware from personal experience of a serious preliminary error in the design of an air-
craft due to a missing factor of 32.2 to convert pounds of mass to slugs.

In 1872 an international meeting in France proposed a treaty called the Metric Con-
vention, which was signed in 1875 by 17 countries including the United States. It was
an improvement over British systems because its use of base 10 is the foundation of
our number system, learned from childhood by all. Problems still remained because
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even the metric countries differed in their use of kiloponds instead of dynes or new-
tons, kilograms instead of grams, or calories instead of joules. To standardize the met-
ric system, a General Conference of Weights and Measures attended in 1960 by 40
countries proposed the International System of Units (SI). We are now undergoing a
painful period of transition to SI, an adjustment which may take many more years to
complete. The professional societies have led the way. Since July 1, 1974, SI units have
been required by all papers published by the American Society of Mechanical Engi-
neers, which prepared a useful booklet explaining the SI [9]. The present text will use
SI units together with British gravitational (BG) units.

In fluid mechanics there are only four primary dimensions from which all other dimen-
sions can be derived: mass, length, time, and temperature.4 These dimensions and their units
in both systems are given in Table 1.1. Note that the kelvin unit uses no degree symbol.
The braces around a symbol like {M} mean “the dimension” of mass. All other variables
in fluid mechanics can be expressed in terms of {M}, {L}, {T}, and {)}. For example, ac-
celeration has the dimensions {LT$ 2}. The most crucial of these secondary dimensions is
force, which is directly related to mass, length, and time by Newton’s second law

F # ma (1.2)

From this we see that, dimensionally, {F} # {MLT$ 2}. A constant of proportionality
is avoided by defining the force unit exactly in terms of the primary units. Thus we
define the newton and the pound of force

1 newton of force # 1 N ! 1 kg * m/s2

(1.3)
1 pound of force # 1 lbf ! 1 slug * ft/s2 # 4.4482 N

In this book the abbreviation lbf is used for pound-force and lb for pound-mass. If in-
stead one adopts other force units such as the dyne or the poundal or kilopond or adopts
other mass units such as the gram or pound-mass, a constant of proportionality called
gc must be included in Eq. (1.2). We shall not use gc in this book since it is not nec-
essary in the SI and BG systems.

A list of some important secondary variables in fluid mechanics, with dimensions
derived as combinations of the four primary dimensions, is given in Table 1.2. A more
complete list of conversion factors is given in App. C.
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4If electromagnetic effects are important, a fifth primary dimension must be included, electric current
{I}, whose SI unit is the ampere (A).

Primary dimension SI unit BG unit Conversion factor

Mass {M} Kilogram (kg) Slug 1 slug # 14.5939 kg
Length {L} Meter (m) Foot (ft) 1 ft # 0.3048 m
Time {T} Second (s) Second (s) 1 s # 1 s
Temperature {)} Kelvin (K) Rankine (°R) 1 K # 1.8°R

Table 1.1 Primary Dimensions in
SI and BG Systems

Primary Dimensions



Part (a)

Part (b)

Part (c)

EXAMPLE 1.1

A body weighs 1000 lbf when exposed to a standard earth gravity g # 32.174 ft/s2. (a) What is
its mass in kg? (b) What will the weight of this body be in N if it is exposed to the moon’s stan-
dard acceleration gmoon # 1.62 m/s2? (c) How fast will the body accelerate if a net force of 400
lbf is applied to it on the moon or on the earth?

Solution

Equation (1.2) holds with F # weight and a # gearth:

F # W # mg # 1000 lbf # (m slugs)(32.174 ft/s2)

or
m # '

3
1
2
0
.1
0
7
0
4

' # (31.08 slugs)(14.5939 kg/slug) # 453.6 kg Ans. (a)

The change from 31.08 slugs to 453.6 kg illustrates the proper use of the conversion factor
14.5939 kg/slug.

The mass of the body remains 453.6 kg regardless of its location. Equation (1.2) applies with a
new value of a and hence a new force

F # Wmoon # mgmoon # (453.6 kg)(1.62 m/s2) # 735 N Ans. (b)

This problem does not involve weight or gravity or position and is simply a direct application
of Newton’s law with an unbalanced force:

F # 400 lbf # ma # (31.08 slugs)(a ft/s2)

or

a # '
3
4
1
0
.0
0
8

' # 12.43 ft/s2 # 3.79 m/s2 Ans. (c)

This acceleration would be the same on the moon or earth or anywhere.
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Secondary dimension SI unit BG unit Conversion factor

Area {L2} m2 ft2 1 m2 # 10.764 ft2

Volume {L3} m3 ft3 1 m3 # 35.315 ft3

Velocity {LT$ 1} m/s ft/s 1 ft/s # 0.3048 m/s
Acceleration {LT$ 2} m/s2 ft/s2 1 ft/s2 # 0.3048 m/s2

Pressure or stress
{ML$ 1T$ 2} Pa # N/m2 lbf/ft2 1 lbf/ft2 # 47.88 Pa

Angular velocity {T$ 1} s$ 1 s$ 1 1 s$ 1 # 1 s$ 1

Energy, heat, work
{ML2T$ 2} J # N * m ft * lbf 1 ft * lbf # 1.3558 J

Power {ML2T$ 3} W # J/s ft * lbf/s 1 ft * lbf/s # 1.3558 W
Density {ML$ 3} kg/m3 slugs/ft3 1 slug/ft3 # 515.4 kg/m3

Viscosity {ML$ 1T$ 1} kg/(m * s) slugs/(ft * s) 1 slug/(ft * s) # 47.88 kg/(m * s)
Specific heat {L2T$ 2)$ 1} m2/(s2 * K) ft2/(s2 * °R) 1 m2/(s2 * K) # 5.980 ft2/(s2 * °R)

Table 1.2 Secondary Dimensions in
Fluid Mechanics



Part (a)

Part (b)

Many data in the literature are reported in inconvenient or arcane units suitable only
to some industry or specialty or country. The engineer should convert these data to the
SI or BG system before using them. This requires the systematic application of con-
version factors, as in the following example.

EXAMPLE 1.2

An early viscosity unit in the cgs system is the poise (abbreviated P), or g/(cm * s), named after
J. L. M. Poiseuille, a French physician who performed pioneering experiments in 1840 on wa-
ter flow in pipes. The viscosity of water (fresh or salt) at 293.16 K # 20°C is approximately
+ # 0.01 P. Express this value in (a) SI and (b) BG units.

Solution

+ # [0.01 g/(cm * s)] '
10
1
0
k
0
g

g
' (100 cm/m) # 0.001 kg/(m * s) Ans. (a)

+ # [0.001 kg/(m * s)] '
14
1
.5
sl
9
ug

kg
' (0.3048 m/ft)

# 2.09 ( 10$ 5 slug/(ft * s) Ans. (b)

Note: Result (b) could have been found directly from (a) by dividing (a) by the viscosity con-
version factor 47.88 listed in Table 1.2.

We repeat our advice: Faced with data in unusual units, convert them immediately
to either SI or BG units because (1) it is more professional and (2) theoretical equa-
tions in fluid mechanics are dimensionally consistent and require no further conversion
factors when these two fundamental unit systems are used, as the following example
shows.

EXAMPLE 1.3

A useful theoretical equation for computing the relation between pressure, velocity, and altitude
in a steady flow of a nearly inviscid, nearly incompressible fluid with negligible heat transfer
and shaft work5 is the Bernoulli relation, named after Daniel Bernoulli, who published a hy-
drodynamics textbook in 1738:

p0 # p , '12'&V2 , &gZ (1)

where p0 # stagnation pressure
p # pressure in moving fluid
V # velocity
& # density
Z # altitude
g # gravitational acceleration
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Part (a)

Part (b)

Part (c)

(a) Show that Eq. (1) satisfies the principle of dimensional homogeneity, which states that all
additive terms in a physical equation must have the same dimensions. (b) Show that consistent
units result without additional conversion factors in SI units. (c) Repeat (b) for BG units.

Solution

We can express Eq. (1) dimensionally, using braces by entering the dimensions of each term
from Table 1.2:

{ML$ 1T$ 2} # {ML$ 1T$ 2} , {ML$ 3}{L2T$ 2} , {ML$ 3}{LT$ 2}{L}

# {ML$ 1T$ 2} for all terms Ans. (a)

Enter the SI units for each quantity from Table 1.2:

{N/m2} # {N/m2} , {kg/m3}{m2/s2} , {kg/m3}{m/s2}{m}

# {N/m2} , {kg/(m * s2)}

The right-hand side looks bad until we remember from Eq. (1.3) that 1 kg # 1 N * s2/m.

{kg/(m * s2)} # '
{N

{m
* s
*

2

s
/
2
m
}

}
' # {N/m2} Ans. (b)

Thus all terms in Bernoulli’s equation will have units of pascals, or newtons per square meter,
when SI units are used. No conversion factors are needed, which is true of all theoretical equa-
tions in fluid mechanics.

Introducing BG units for each term, we have

{lbf/ft2} # {lbf/ft2} , {slugs/ft3}{ft2/s2} , {slugs/ft3}{ft/s2}{ft}

# {lbf/ft2} , {slugs/(ft * s2)}

But, from Eq. (1.3), 1 slug # 1 lbf * s2/ft, so that

{slugs/(ft * s2)} # '
{l

{
b
f
f
t
*
*
s
s

2

2
/
}
ft}

' # {lbf/ft2} Ans. (c)

All terms have the unit of pounds-force per square foot. No conversion factors are needed in the
BG system either.

There is still a tendency in English-speaking countries to use pound-force per square
inch as a pressure unit because the numbers are more manageable. For example, stan-
dard atmospheric pressure is 14.7 lbf/in2 # 2116 lbf/ft2 # 101,300 Pa. The pascal is a
small unit because the newton is less than '14' lbf and a square meter is a very large area.
It is felt nevertheless that the pascal will gradually gain universal acceptance; e.g., re-
pair manuals for U.S. automobiles now specify pressure measurements in pascals.

Note that not only must all (fluid) mechanics equations be dimensionally homogeneous,
one must also use consistent units; that is, each additive term must have the same units.
There is no trouble doing this with the SI and BG systems, as in Ex. 1.3, but woe unto
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Homogeneous versus
Dimensionally Inconsistent
Equations

those who try to mix colloquial English units. For example, in Chap. 9, we often use
the assumption of steady adiabatic compressible gas flow:

h , '
1
2

'V2 # constant

where h is the fluid enthalpy and V2/2 is its kinetic energy. Colloquial thermodynamic
tables might list h in units of British thermal units per pound (Btu/lb), whereas V is
likely used in ft/s. It is completely erroneous to add Btu/lb to ft2/s2. The proper unit
for h in this case is ft * lbf/slug, which is identical to ft2/s2. The conversion factor is
1 Btu/lb " 25,040 ft2/s2 # 25,040 ft * lbf/slug.

All theoretical equations in mechanics (and in other physical sciences) are dimension-
ally homogeneous; i.e., each additive term in the equation has the same dimensions.
For example, Bernoulli’s equation (1) in Example 1.3 is dimensionally homogeneous:
Each term has the dimensions of pressure or stress of {F/L2}. Another example is the
equation from physics for a body falling with negligible air resistance:

S # S0 , V0t , '12'gt2

where S0 is initial position, V0 is initial velocity, and g is the acceleration of gravity. Each
term in this relation has dimensions of length {L}. The factor '12', which arises from inte-
gration, is a pure (dimensionless) number, {1}. The exponent 2 is also dimensionless.

However, the reader should be warned that many empirical formulas in the engi-
neering literature, arising primarily from correlations of data, are dimensionally in-
consistent. Their units cannot be reconciled simply, and some terms may contain hid-
den variables. An example is the formula which pipe valve manufacturers cite for liquid
volume flow rate Q (m3/s) through a partially open valve:

Q # CV#'
S
-

G
p
'$

1/2

where -p is the pressure drop across the valve and SG is the specific gravity of the
liquid (the ratio of its density to that of water). The quantity CV is the valve flow co-
efficient, which manufacturers tabulate in their valve brochures. Since SG is dimen-
sionless {1}, we see that this formula is totally inconsistent, with one side being a flow
rate {L3/T} and the other being the square root of a pressure drop {M1/2/L1/2T}. It fol-
lows that CV must have dimensions, and rather odd ones at that: {L7/2/M1/2}. Nor is
the resolution of this discrepancy clear, although one hint is that the values of CV in
the literature increase nearly as the square of the size of the valve. The presentation of
experimental data in homogeneous form is the subject of dimensional analysis (Chap.
5). There we shall learn that a homogeneous form for the valve flow relation is

Q # CdAopening#'
-
&
p
'$

1/2

where & is the liquid density and A the area of the valve opening. The discharge coeffi-
cient Cd is dimensionless and changes only slightly with valve size. Please believe—un-
til we establish the fact in Chap. 5—that this latter is a much better formulation of the data.
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Convenient Prefixes in 
Powers of 10

Part (a)

Part (b)

Meanwhile, we conclude that dimensionally inconsistent equations, though they
abound in engineering practice, are misleading and vague and even dangerous, in the
sense that they are often misused outside their range of applicability.

Engineering results often are too small or too large for the common units, with too
many zeros one way or the other. For example, to write p # 114,000,000 Pa is long
and awkward. Using the prefix “M” to mean 106, we convert this to a concise p #
114 MPa (megapascals). Similarly, t # 0.000000003 s is a proofreader’s nightmare
compared to the equivalent t # 3 ns (nanoseconds). Such prefixes are common and
convenient, in both the SI and BG systems. A complete list is given in Table 1.3.

EXAMPLE 1.4

In 1890 Robert Manning, an Irish engineer, proposed the following empirical formula for the
average velocity V in uniform flow due to gravity down an open channel (BG units):

V # '
1.

n
49
'R2/3S1/2 (1)

where R # hydraulic radius of channel (Chaps. 6 and 10)
S # channel slope (tangent of angle that bottom makes with horizontal)
n # Manning’s roughness factor (Chap. 10)

and n is a constant for a given surface condition for the walls and bottom of the channel. (a) Is
Manning’s formula dimensionally consistent? (b) Equation (1) is commonly taken to be valid in
BG units with n taken as dimensionless. Rewrite it in SI form.

Solution

Introduce dimensions for each term. The slope S, being a tangent or ratio, is dimensionless, de-
noted by {unity} or {1}. Equation (1) in dimensional form is

%'
T
L

'&# %'1.
n
49
'&{L2/3}{1}

This formula cannot be consistent unless {1.49/n} # {L1/3/T}. If n is dimensionless (and it is
never listed with units in textbooks), then the numerical value 1.49 must have units. This can be
tragic to an engineer working in a different unit system unless the discrepancy is properly doc-
umented. In fact, Manning’s formula, though popular, is inconsistent both dimensionally and
physically and does not properly account for channel-roughness effects except in a narrow range
of parameters, for water only.

From part (a), the number 1.49 must have dimensions {L1/3/T} and thus in BG units equals 
1.49 ft1/3/s. By using the SI conversion factor for length we have

(1.49 ft1/3/s)(0.3048 m/ft)1/3 # 1.00 m1/3/s

Therefore Manning’s formula in SI becomes

V # '
1
n
.0
'R2/3S1/2 Ans. (b) (2)
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Table 1.3 Convenient Prefixes 
for Engineering Units

Multiplicative
factor Prefix Symbol

1012 tera T
109 giga G
106 mega M
103 kilo k
102 hecto h
10 deka da
10$ 1 deci d
10$ 2 centi c
10$ 3 milli m
10$ 6 micro +
10$ 9 nano n
10$ 12 pico p
10$ 15 femto f
10$ 18 atto a



1.5 Properties of the 
Velocity Field

Eulerian and Lagrangian
Desciptions

The Velocity Field

with R in m and V in m/s. Actually, we misled you: This is the way Manning, a metric user, first
proposed the formula. It was later converted to BG units. Such dimensionally inconsistent formu-
las are dangerous and should either be reanalyzed or treated as having very limited application.

In a given flow situation, the determination, by experiment or theory, of the properties
of the fluid as a function of position and time is considered to be the solution to the
problem. In almost all cases, the emphasis is on the space-time distribution of the fluid
properties. One rarely keeps track of the actual fate of the specific fluid particles.6 This
treatment of properties as continuum-field functions distinguishes fluid mechanics from
solid mechanics, where we are more likely to be interested in the trajectories of indi-
vidual particles or systems.

There are two different points of view in analyzing problems in mechanics. The first
view, appropriate to fluid mechanics, is concerned with the field of flow and is called
the eulerian method of description. In the eulerian method we compute the pressure
field p(x, y, z, t) of the flow pattern, not the pressure changes p(t) which a particle ex-
periences as it moves through the field.

The second method, which follows an individual particle moving through the flow,
is called the lagrangian description. The lagrangian approach, which is more appro-
priate to solid mechanics, will not be treated in this book. However, certain numerical
analyses of sharply bounded fluid flows, such as the motion of isolated fluid droplets,
are very conveniently computed in lagrangian coordinates [1].

Fluid-dynamic measurements are also suited to the eulerian system. For example,
when a pressure probe is introduced into a laboratory flow, it is fixed at a specific po-
sition (x, y, z). Its output thus contributes to the description of the eulerian pressure
field p(x, y, z, t). To simulate a lagrangian measurement, the probe would have to move
downstream at the fluid particle speeds; this is sometimes done in oceanographic mea-
surements, where flowmeters drift along with the prevailing currents.

The two different descriptions can be contrasted in the analysis of traffic flow along
a freeway. A certain length of freeway may be selected for study and called the field
of flow. Obviously, as time passes, various cars will enter and leave the field, and the
identity of the specific cars within the field will constantly be changing. The traffic en-
gineer ignores specific cars and concentrates on their average velocity as a function of
time and position within the field, plus the flow rate or number of cars per hour pass-
ing a given section of the freeway. This engineer is using an eulerian description of the
traffic flow. Other investigators, such as the police or social scientists, may be inter-
ested in the path or speed or destination of specific cars in the field. By following a
specific car as a function of time, they are using a lagrangian description of the flow.

Foremost among the properties of a flow is the velocity field V(x, y, z, t). In fact, de-
termining the velocity is often tantamount to solving a flow problem, since other prop-
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erties follow directly from the velocity field. Chapter 2 is devoted to the calculation of
the pressure field once the velocity field is known. Books on heat transfer (for exam-
ple, Ref. 10) are essentially devoted to finding the temperature field from known ve-
locity fields.

In general, velocity is a vector function of position and time and thus has three com-
ponents u, v, and w, each a scalar field in itself:

V(x, y, z, t) # iu(x, y, z, t) , jv(x, y, z, t) , kw(x, y, z, t) (1.4)

The use of u, v, and w instead of the more logical component notation Vx, Vy, and Vz

is the result of an almost unbreakable custom in fluid mechanics.
Several other quantities, called kinematic properties, can be derived by mathemati-

cally manipulating the velocity field. We list some kinematic properties here and give
more details about their use and derivation in later chapters:

1. Displacement vector: r # ' V dt (Sec. 1.9)

2. Acceleration: a # '
d
d
V
t
' (Sec. 4.1)

3. Volume rate of flow: Q # ' (V ! n) dA (Sec. 3.2)

4. Volume expansion rate: '
!
1
' '

d
d
!
t
' # . ! V (Sec. 4.2)

5. Local angular velocity: / # '12'. ( V (Sec. 4.8)

We will not illustrate any problems regarding these kinematic properties at present. The
point of the list is to illustrate the type of vector operations used in fluid mechanics and
to make clear the dominance of the velocity field in determining other flow properties.
Note: The fluid acceleration, item 2 above, is not as simple as it looks and actually in-
volves four different terms due to the use of the chain rule in calculus (see Sec. 4.1).

EXAMPLE 1.5

Fluid flows through a contracting section of a duct, as in Fig. E1.5. A velocity probe inserted at
section (1) measures a steady value u1 # 1 m/s, while a similar probe at section (2) records a
steady u2 # 3 m/s. Estimate the fluid acceleration, if any, if -x # 10 cm.

Solution

The flow is steady (not time-varying), but fluid particles clearly increase in velocity as they pass
from (1) to (2). This is the concept of convective acceleration (Sec. 4.1). We may estimate the
acceleration as a velocity change -u divided by a time change -t # -x/uavg:

ax "'ve
t
l
i
o
m
c
e
ity

ch
c
a
h
n
a
g
n
e
ge

'" # " 40 m/s2 Ans.

A simple estimate thus indicates that this seemingly innocuous flow is accelerating at 4 times

(3.0 $ 1.0 m/s)(1.0 , 3.0 m/s)
''''

2(0.1 m)
u2 $ u1''

-x/['12'(u1 , u2)]
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1.6 Thermodynamic Properties
of a Fluid

the acceleration of gravity. In the limit as -x and -t become very small, the above estimate re-
duces to a partial-derivative expression for convective x-acceleration:

ax,convective # lim
-t→0

'
-
-

u
t

' # u'
0
0
u
x
'

In three-dimensional flow (Sec. 4.1) there are nine of these convective terms.

While the velocity field V is the most important fluid property, it interacts closely with
the thermodynamic properties of the fluid. We have already introduced into the dis-
cussion the three most common such properties

1. Pressure p
2. Density &
3. Temperature T

These three are constant companions of the velocity vector in flow analyses. Four other
thermodynamic properties become important when work, heat, and energy balances are
treated (Chaps. 3 and 4):

4. Internal energy e
5. Enthalpy h # û , p/&
6. Entropy s
7. Specific heats cp and cv

In addition, friction and heat conduction effects are governed by the two so-called trans-
port properties:

8. Coefficient of viscosity +
9. Thermal conductivity k

All nine of these quantities are true thermodynamic properties which are determined
by the thermodynamic condition or state of the fluid. For example, for a single-phase
substance such as water or oxygen, two basic properties such as pressure and temper-
ature are sufficient to fix the value of all the others:

& # &(p, T ) h # h(p, T ) + # +(p, T ) (1.5)

and so on for every quantity in the list. Note that the specific volume, so important in
thermodynamic analyses, is omitted here in favor of its inverse, the density &.

Recall that thermodynamic properties describe the state of a system, i.e., a collec-
tion of matter of fixed identity which interacts with its surroundings. In most cases
here the system will be a small fluid element, and all properties will be assumed to be
continuum properties of the flow field: & # &(x, y, z, t), etc.

Recall also that thermodynamics is normally concerned with static systems, whereas
fluids are usually in variable motion with constantly changing properties. Do the prop-
erties retain their meaning in a fluid flow which is technically not in equilibrium? The
answer is yes, from a statistical argument. In gases at normal pressure (and even more
so for liquids), an enormous number of molecular collisions occur over a very short
distance of the order of 1 +m, so that a fluid subjected to sudden changes rapidly ad-
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Temperature

Specific Weight

Density

justs itself toward equilibrium. We therefore assume that all the thermodynamic prop-
erties listed above exist as point functions in a flowing fluid and follow all the laws
and state relations of ordinary equilibrium thermodynamics. There are, of course, im-
portant nonequilibrium effects such as chemical and nuclear reactions in flowing flu-
ids which are not treated in this text.

Pressure is the (compression) stress at a point in a static fluid (Fig. 1.1). Next to ve-
locity, the pressure p is the most dynamic variable in fluid mechanics. Differences or
gradients in pressure often drive a fluid flow, especially in ducts. In low-speed flows,
the actual magnitude of the pressure is often not important, unless it drops so low as to
cause vapor bubbles to form in a liquid. For convenience, we set many such problem
assignments at the level of 1 atm # 2116 lbf/ft2 # 101,300 Pa. High-speed (compressible)
gas flows (Chap. 9), however, are indeed sensitive to the magnitude of pressure.

Temperature T is a measure of the internal energy level of a fluid. It may vary con-
siderably during high-speed flow of a gas (Chap. 9). Although engineers often use Cel-
sius or Fahrenheit scales for convenience, many applications in this text require ab-
solute (Kelvin or Rankine) temperature scales:

°R # °F , 459.69
K # °C , 273.16

If temperature differences are strong, heat transfer may be important [10], but our con-
cern here is mainly with dynamic effects. We examine heat-transfer principles briefly
in Secs. 4.5 and 9.8.

The density of a fluid, denoted by & (lowercase Greek rho), is its mass per unit vol-
ume. Density is highly variable in gases and increases nearly proportionally to the pres-
sure level. Density in liquids is nearly constant; the density of water (about 1000 kg/m3)
increases only 1 percent if the pressure is increased by a factor of 220. Thus most liq-
uid flows are treated analytically as nearly “incompressible.”

In general, liquids are about three orders of magnitude more dense than gases at at-
mospheric pressure. The heaviest common liquid is mercury, and the lightest gas is hy-
drogen. Compare their densities at 20°C and 1 atm:

Mercury: & # 13,580 kg/m3 Hydrogen: & # 0.0838 kg/m3

They differ by a factor of 162,000! Thus the physical parameters in various liquid and
gas flows might vary considerably. The differences are often resolved by the use of di-
mensional analysis (Chap. 5). Other fluid densities are listed in Tables A.3 and A.4 (in
App. A).

The specific weight of a fluid, denoted by 1 (lowercase Greek gamma), is its weight
per unit volume. Just as a mass has a weight W # mg, density and specific weight are
simply related by gravity:

1 # &g (1.6)
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Specific Gravity

Potential and Kinetic Energies

The units of 1 are weight per unit volume, in lbf/ft3 or N/m3. In standard earth grav-
ity, g # 32.174 ft/s2 # 9.807 m/s2. Thus, e.g., the specific weights of air and water at
20°C and 1 atm are approximately

1air # (1.205 kg/m3)(9.807 m/s2) # 11.8 N/m3 # 0.0752 lbf/ft3

1water # (998 kg/m3)(9.807 m/s2) # 9790 N/m3 # 62.4 lbf/ft3

Specific weight is very useful in the hydrostatic-pressure applications of Chap. 2. Spe-
cific weights of other fluids are given in Tables A.3 and A.4.

Specific gravity, denoted by SG, is the ratio of a fluid density to a standard reference
fluid, water (for liquids), and air (for gases):

SGgas # '
&

&
g

a

a

ir

s
' # '

1.20
&

5
g

k
as

g/m3' (1.7)

SGliquid # '
&

&
l

w

iq

a

u

te

id

r
' # '

99
&

8
li

k
qu

g
i

/
d

m3'

For example, the specific gravity of mercury (Hg) is SGHg # 13,580/998 " 13.6. En-
gineers find these dimensionless ratios easier to remember than the actual numerical
values of density of a variety of fluids.

In thermostatics the only energy in a substance is that stored in a system by molecu-
lar activity and molecular bonding forces. This is commonly denoted as internal en-
ergy û . A commonly accepted adjustment to this static situation for fluid flow is to add
two more energy terms which arise from newtonian mechanics: the potential energy
and kinetic energy.

The potential energy equals the work required to move the system of mass m from
the origin to a position vector r # ix , jy , kz against a gravity field g. Its value is
$ mg ! r, or $ g ! r per unit mass. The kinetic energy equals the work required to change
the speed of the mass from zero to velocity V. Its value is '12'mV2 or '12'V2 per unit mass.
Then by common convention the total stored energy e per unit mass in fluid mechan-
ics is the sum of three terms:

e # û , '12'V2 , ($ g ! r) (1.8)

Also, throughout this book we shall define z as upward, so that g # $ gk and g ! r #
$ gz. Then Eq. (1.8) becomes

e # û , '12'V2 , gz (1.9)

The molecular internal energy û is a function of T and p for the single-phase pure sub-
stance, whereas the potential and kinetic energies are kinematic properties.

Thermodynamic properties are found both theoretically and experimentally to be re-
lated to each other by state relations which differ for each substance. As mentioned,
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we shall confine ourselves here to single-phase pure substances, e.g., water in its liq-
uid phase. The second most common fluid, air, is a mixture of gases, but since the mix-
ture ratios remain nearly constant between 160 and 2200 K, in this temperature range
air can be considered to be a pure substance.

All gases at high temperatures and low pressures (relative to their critical point) are
in good agreement with the perfect-gas law

p # &RT R # cp $ cv # gas constant (1.10)

Since Eq. (1.10) is dimensionally consistent, R has the same dimensions as specific
heat, {L2T$ 2)$ 1}, or velocity squared per temperature unit (kelvin or degree Rank-
ine). Each gas has its own constant R, equal to a universal constant 2 divided by the
molecular weight

Rgas # '
M

2

gas
' (1.11)

where 2 # 49,700 ft2/(s2 * °R) # 8314 m2/(s2 * K). Most applications in this book are
for air, with M # 28.97:

Rair # 1717 ft2/(s2 * °R) # 287 m2/(s2 * K) (1.12)

Standard atmospheric pressure is 2116 lbf/ft2, and standard temperature is 60°F #
520°R. Thus standard air density is

&air # '
(171

2
7
1
)
1
(
6
520)
' # 0.00237 slug/ft3 # 1.22 kg/m3 (1.13)

This is a nominal value suitable for problems.
One proves in thermodynamics that Eq. (1.10) requires that the internal molecular

energy û of a perfect gas vary only with temperature: û # û (T). Therefore the specific
heat cv also varies only with temperature:

cv # #'
0
0
T
û
'$&

# '
d
d
T
û
' # cv(T)

or dû # cv(T) dT (1.14)

In like manner h and cp of a perfect gas also vary only with temperature:

h # û , '
p
&

' # û , RT # h(T)

cp # #'
0
0
T
h
'$p

# '
d
d
T
h
' # cp(T) (1.15)

dh # cp(T) dT

The ratio of specific heats of a perfect gas is an important dimensionless parameter in
compressible-flow analysis (Chap. 9)

k # '
c
c

p

v
' # k(T) 3 1 (1.16)
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Part (a)

Part (b)

As a first approximation in airflow analysis we commonly take cp, cv, and k to be constant

kair " 1.4

cv # '
k $

R
1

' " 4293 ft2/(s2 * °R) # 718 m2/(s2 * K)
(1.17)

cp # '
k

k
$
R

1
' " 6010 ft2/(s2 * °R) # 1005 m2/(s2 * K)

Actually, for all gases, cp and cv increase gradually with temperature, and k decreases
gradually. Experimental values of the specific-heat ratio for eight common gases are
shown in Fig. 1.3.

Many flow problems involve steam. Typical steam operating conditions are rela-
tively close to the critical point, so that the perfect-gas approximation is inaccurate.
The properties of steam are therefore available in tabular form [13], but the error of
using the perfect-gas law is sometimes not great, as the following example shows.

EXAMPLE 1.6

Estimate & and cp of steam at 100 lbf/in2 and 400°F (a) by a perfect-gas approximation and
(b) from the ASME steam tables [13].

Solution

First convert to BG units: p # 100 lbf/in2 # 14,400 lb/ft2, T # 400°F # 860°R. From Table A.4
the molecular weight of H2O is 2MH , MO # 2(1.008) , 16.0 # 18.016. Then from Eq. (1.11)
the gas constant of steam is approximately

R # '
4
1
9
8
,
.
7
0
0
1
0
6

' # 2759 ft2/(s2 * °R)

whence, from the perfect-gas law,

& " '
R
p
T
' # '

27
1
5
4
9
,4
(8
0
6
0
0)

' # 0.00607 slug/ft3 Ans. (a)

From Fig. 1.3, k for steam at 860°R is approximately 1.30. Then from Eq. (1.17),

cp " '
k

k
$
R

1
' # '

1
1
.3
.3
0
0
(2

$
75

1
9)

' # 12,000 ft2/(s2 * °R) Ans. (a)

From Ref. 13, the specific volume v of steam at 100 lbf/in2 and 400°F is 4.935 ft3/lbm. Then
the density is the inverse of this, converted to slugs:

& # '
1
v
' # # 0.00630 slug/ft3 Ans. (b)

This is about 4 percent higher than our ideal-gas estimate in part (a).
Reference 13 lists the value of cp of steam at 100 lbf/in2 and 400°F as 0.535 Btu/(lbm * °F).

Convert this to BG units:

cp # [0.535 Btu/(lbm * °R)](778.2 ft * lbf/Btu)(32.174 lbm/slug)

# 13,400 ft * lbf/(slug * °R) # 13,400 ft2/(s2 * °R) Ans. (b)

1
''''
(4.935 ft2/lbm)(32.174 lbm/slug)
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Fig. 1.3 Specific-heat ratio of eight
common gases as a function of tem-
perature. (Data from Ref. 12.)

This is about 11 percent higher than our ideal-gas estimate in part (a). The chief reason for the
discrepancy is that this temperature and this pressure are quite close to the critical point and sat-
uration line of steam. At higher temperatures and lower pressures, say, 800°F and 50 lbf/in2, the
perfect-gas law gives & and cp of steam within an accuracy of 4 1 percent.

Note that the use of pound-mass and British thermal units in the traditional steam tables re-
quires continual awkward conversions to BG units. Newer tables and disks are in SI units.

The writer knows of no “perfect-liquid law” comparable to that for gases. Liquids are
nearly incompressible and have a single reasonably constant specific heat. Thus an ide-
alized state relation for a liquid is

& " const cp " cv " const dh " cp dT (1.18)

Most of the flow problems in this book can be attacked with these simple as-
sumptions. Water is normally taken to have a density of 1.94 slugs/ft3 and a spe-
cific heat cp # 25,200 ft2/(s2 * °R). The steam tables may be used if more accuracy
is required.
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1.7 Viscosity and Other
Secondary Properties

Viscosity

The density of a liquid usually decreases slightly with temperature and increases
moderately with pressure. If we neglect the temperature effect, an empirical pressure-
density relation for a liquid is

'
p
p

a
' " (B , 1)#'

&
&

a
'$

n
$ B (1.19)

where B and n are dimensionless parameters which vary slightly with temperature and
pa and &a are standard atmospheric values. Water can be fitted approximately to the
values B " 3000 and n " 7.

Seawater is a variable mixture of water and salt and thus requires three thermody-
namic properties to define its state. These are normally taken as pressure, temperature,
and the salinity Ŝ, defined as the weight of the dissolved salt divided by the weight of
the mixture. The average salinity of seawater is 0.035, usually written as 35 parts per
1000, or 35 ‰. The average density of seawater is 2.00 slugs/ft3. Strictly speaking,
seawater has three specific heats, all approximately equal to the value for pure water
of 25,200 ft2/(s2 * °R) # 4210 m2/(s2 * K).

EXAMPLE 1.7

The pressure at the deepest part of the ocean is approximately 1100 atm. Estimate the density
of seawater at this pressure.

Solution

Equation (1.19) holds for either water or seawater. The ratio p/pa is given as 1100:

1100 " (3001)#'
&
&

a
'$

7
$ 3000

or '
&
&

a
' # #'431

0
0
0
0
1

'$
1/7

# 1.046

Assuming an average surface seawater density &a # 2.00 slugs/ft3, we compute

& " 1.046(2.00) # 2.09 slugs/ft3 Ans.

Even at these immense pressures, the density increase is less than 5 percent, which justifies the
treatment of a liquid flow as essentially incompressible.

The quantities such as pressure, temperature, and density discussed in the previous sec-
tion are primary thermodynamic variables characteristic of any system. There are also
certain secondary variables which characterize specific fluid-mechanical behavior. The
most important of these is viscosity, which relates the local stresses in a moving fluid
to the strain rate of the fluid element.

When a fluid is sheared, it begins to move at a strain rate inversely proportional to a
property called its coefficient of viscosity +. Consider a fluid element sheared in one
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Fig. 1.4 Shear stress causes contin-
uous shear deformation in a fluid:
(a) a fluid element straining at a
rate %!/%t; (b) newtonian shear dis-
tribution in a shear layer near a
wall.

plane by a single shear stress 5, as in Fig. 1.4a. The shear strain angle %! will contin-
uously grow with time as long as the stress 5 is maintained, the upper surface moving
at speed %u larger than the lower. Such common fluids as water, oil, and air show a
linear relation between applied shear and resulting strain rate

5 6 '
%
%
!
t
' (1.20)

From the geometry of Fig. 1.4a we see that

tan %! # '
%u

%y
%t
' (1.21)

In the limit of infinitesimal changes, this becomes a relation between shear strain rate
and velocity gradient

'
d
d
!
t
' # '

d
d
u
y
' (1.22)

From Eq. (1.20), then, the applied shear is also proportional to the velocity gradient
for the common linear fluids. The constant of proportionality is the viscosity coeffi-
cient +

5 # +'
d
d
!
t
' # +'

d
d
u
y
' (1.23)

Equation (1.23) is dimensionally consistent; therefore + has dimensions of stress-time:
{FT/L2} or {M/(LT)}. The BG unit is slugs per foot-second, and the SI unit is kilo-
grams per meter-second. The linear fluids which follow Eq. (1.23) are called newton-
ian fluids, after Sir Isaac Newton, who first postulated this resistance law in 1687.

We do not really care about the strain angle !(t) in fluid mechanics, concentrating
instead on the velocity distribution u(y), as in Fig. 1.4b. We shall use Eq. (1.23) in
Chap. 4 to derive a differential equation for finding the velocity distribution u(y)—and,
more generally, V(x, y, z, t)—in a viscous fluid. Figure 1.4b illustrates a shear layer,
or boundary layer, near a solid wall. The shear stress is proportional to the slope of the
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The Reynolds Number

velocity profile and is greatest at the wall. Further, at the wall, the velocity u is zero
relative to the wall: This is called the no-slip condition and is characteristic of all 
viscous-fluid flows.

The viscosity of newtonian fluids is a true thermodynamic property and varies with
temperature and pressure. At a given state (p, T) there is a vast range of values among the
common fluids. Table 1.4 lists the viscosity of eight fluids at standard pressure and tem-
perature. There is a variation of six orders of magnitude from hydrogen up to glycerin.
Thus there will be wide differences between fluids subjected to the same applied stresses.

Generally speaking, the viscosity of a fluid increases only weakly with pressure. For
example, increasing p from 1 to 50 atm will increase + of air only 10 percent. Tem-
perature, however, has a strong effect, with + increasing with T for gases and decreas-
ing for liquids. Figure A.1 (in App. A) shows this temperature variation for various com-
mon fluids. It is customary in most engineering work to neglect the pressure variation.

The variation + (p, T) for a typical fluid is nicely shown by Fig. 1.5, from Ref. 14,
which normalizes the data with the critical-point state (+c, pc, Tc). This behavior, called
the principle of corresponding states, is characteristic of all fluids, but the actual nu-
merical values are uncertain to 4 20 percent for any given fluid. For example, values
of + (T) for air at 1 atm, from Table A.2, fall about 8 percent low compared to the
“low-density limit” in Fig. 1.5.

Note in Fig. 1.5 that changes with temperature occur very rapidly near the critical
point. In general, critical-point measurements are extremely difficult and uncertain.

As we shall see in Chaps. 5 through 7, the primary parameter correlating the viscous
behavior of all newtonian fluids is the dimensionless Reynolds number:

Re # '
&
+
VL
' # '

V
7
L
' (1.24)

where V and L are characteristic velocity and length scales of the flow. The second form
of Re illustrates that the ratio of + to & has its own name, the kinematic viscosity:

7 # '
+
&

' (1.25)

It is called kinematic because the mass units cancel, leaving only the dimensions {L2/T}.
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", Ratio #, $ Ratio
Fluid kg/(m ! s)† "/"(H2) kg/m3 m2/s† $/$(Hg)

Hydrogen 8.8 E–6 00,0001.0 00,000.084 1.05 E–4 00,920
Air 1.8 E–5 0,00002.1 00,001.20 1.51 E–5 00,130
Gasoline 2.9 E–4 00,0033 0,0680 4.22 E–7 00,003.7
Water 1.0 E–3 00,0114 0,0998 1.01 E–6 0000,8.7
Ethyl alcohol 1.2 E–3 0,00135 0,0789 1.52 E–6 000,13
Mercury 1.5 E–3 00,0170 13,580 1.16 E–7 0000,1.0
SAE 30 oil 0.29 033,000 0,0891 3.25 E–4 02,850
Glycerin 1.5 170,000 01,264 1.18 E–3 10,300

†1 kg/(m * s) # 0.0209 slug/(ft * s); 1 m2/s # 10.76 ft2/s.

Table 1.4 Viscosity and Kinematic
Viscosity of Eight Fluids at 1 atm
and 20°C



Fig. 1.5 Fluid viscosity nondimen-
sionalized by critical-point proper-
ties. This generalized chart is char-
acteristic of all fluids but is only
accurate to 4 20 percent. (From
Ref. 14.)

Flow between Plates

Generally, the first thing a fluids engineer should do is estimate the Reynolds num-
ber range of the flow under study. Very low Re indicates viscous creeping motion,
where inertia effects are negligible. Moderate Re implies a smoothly varying laminar
flow. High Re probably spells turbulent flow, which is slowly varying in the time-mean
but has superimposed strong random high-frequency fluctuations. Explicit numerical
values for low, moderate, and high Reynolds numbers cannot be stated here. They de-
pend upon flow geometry and will be discussed in Chaps. 5 through 7.

Table 1.4 also lists values of 7 for the same eight fluids. The pecking order changes
considerably, and mercury, the heaviest, has the smallest viscosity relative to its own
weight. All gases have high 7 relative to thin liquids such as gasoline, water, and al-
cohol. Oil and glycerin still have the highest 7, but the ratio is smaller. For a given
value of V and L in a flow, these fluids exhibit a spread of four orders of magnitude
in the Reynolds number.

A classic problem is the flow induced between a fixed lower plate and an upper plate
moving steadily at velocity V, as shown in Fig. 1.6. The clearance between plates is
h, and the fluid is newtonian and does not slip at either plate. If the plates are large,
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Fig. 1.6 Viscous flow induced by
relative motion between two paral-
lel plates.

this steady shearing motion will set up a velocity distribution u(y), as shown, with v #
w # 0. The fluid acceleration is zero everywhere.

With zero acceleration and assuming no pressure variation in the flow direction, you
should show that a force balance on a small fluid element leads to the result that the
shear stress is constant throughout the fluid. Then Eq. (1.23) becomes

'
d
d
u
y
' # '

+
5
' # const

which we can integrate to obtain

u # a , by

The velocity distribution is linear, as shown in Fig. 1.6, and the constants a and b can
be evaluated from the no-slip condition at the upper and lower walls:

0 # a , b(0) at y # 0
V # a , b(h) at y # h

Hence a # 0 and b # V/h. Then the velocity profile between the plates is given by

u # V '
h
y

' (1.26)

as indicated in Fig. 1.6. Turbulent flow (Chap. 6) does not have this shape.
Although viscosity has a profound effect on fluid motion, the actual viscous stresses

are quite small in magnitude even for oils, as shown in the following example.

EXAMPLE 1.8

Suppose that the fluid being sheared in Fig. 1.6 is SAE 30 oil at 20°C. Compute the shear stress
in the oil if V # 3 m/s and h # 2 cm.

Solution

The shear stress is found from Eq. (1.23) by differentiating Eq. (1.26):

5 # +'
d
d
u
y
' # '

+
h
V
' (1)
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Variation of Viscosity with
Temperature

Thermal Conductivity

From Table 1.4 for SAE 30 oil, + # 0.29 kg/(m * s). Then, for the given values of V and h,
Eq. (1) predicts

5 # # 43 kg/(m * s2)

# 43 N/m2 # 43 Pa Ans.

Although oil is very viscous, this is a modest shear stress, about 2400 times less than atmos-
pheric pressure. Viscous stresses in gases and thin liquids are even smaller.

Temperature has a strong effect and pressure a moderate effect on viscosity. The vis-
cosity of gases and most liquids increases slowly with pressure. Water is anomalous
in showing a very slight decrease below 30°C. Since the change in viscosity is only a
few percent up to 100 atm, we shall neglect pressure effects in this book.

Gas viscosity increases with temperature. Two common approximations are the
power law and the Sutherland law:

#'
T
T

0
'$

n
power law

'
(T/T0)

T

3/2

,
(T

S
0 , S)
' Sutherland law

where +0 is a known viscosity at a known absolute temperature T0 (usually 273 K). The
constants n and S are fit to the data, and both formulas are adequate over a wide range of
temperatures. For air, n " 0.7 and S " 110 K # 199°R. Other values are given in Ref. 3.

Liquid viscosity decreases with temperature and is roughly exponential, + " ae$ bT;
but a better fit is the empirical result that ln + is quadratic in 1/T, where T is absolute
temperature

ln'
+
+

0
' " a , b#'

T
T
0'$, c#'

T
T
0'$

2
(1.28)

For water, with T0 # 273.16 K, +0 # 0.001792 kg/(m * s), suggested values are a #
$ 1.94, b # $ 4.80, and c # 6.74, with accuracy about 4 1 percent. The viscosity of
water is tabulated in Table A.1. Curve-fit viscosity formulas for 355 organic liquids are
given by Yaws et al. [34]. For further viscosity data, see Refs. 28 and 36.

Just as viscosity relates applied stress to resulting strain rate, there is a property called
thermal conductivity k which relates the vector rate of heat flow per unit area q to the
vector gradient of temperature .T. This proportionality, observed experimentally for
fluids and solids, is known as Fourier’s law of heat conduction

q # $ k.T (1.29a)

which can also be written as three scalar equations

q x # $ k'
0
0
T
x
' q y # $ k'

0
0
T
y
' q z # $ k'

0
0
T
z
' (1.29b)

[0.29 kg/(m * s)](3 m/s)
'''

0.02 m
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Nonnewtonian Fluids

The minus sign satisfies the convention that heat flux is positive in the direction of de-
creasing temperature. Fourier’s law is dimensionally consistent, and k has SI units of
joules per second-meter-kelvin. Thermal conductivity k is a thermodynamic property
and varies with temperature and pressure in much the same way as viscosity. The ra-
tio k/k0 can be correlated with T/T0 in the same manner as Eqs. (1.27) and (1.28) for
gases and liquids, respectively.

Further data on viscosity and thermal-conductivity variations can be found in 
Ref. 11.

Fluids which do not follow the linear law of Eq. (1.23) are called nonnewtonian and
are treated in books on rheology [6]. Figure 1.7a compares four examples with a new-
tonian fluid. A dilatant, or shear-thickening, fluid increases resistance with increasing
applied stress. Alternately, a pseudoplastic, or shear-thinning, fluid decreases resistance
with increasing stress. If the thinning effect is very strong, as with the dashed-line
curve, the fluid is termed plastic. The limiting case of a plastic substance is one which
requires a finite yield stress before it begins to flow. The linear-flow Bingham plastic
idealization is shown, but the flow behavior after yield may also be nonlinear. An ex-
ample of a yielding fluid is toothpaste, which will not flow out of the tube until a fi-
nite stress is applied by squeezing.

A further complication of nonnewtonian behavior is the transient effect shown in
Fig. 1.7b. Some fluids require a gradually increasing shear stress to maintain a con-
stant strain rate and are called rheopectic. The opposite case of a fluid which thins out
with time and requires decreasing stress is termed thixotropic. We neglect nonnewton-
ian effects in this book; see Ref. 6 for further study.
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A liquid, being unable to expand freely, will form an interface with a second liquid or
gas. The physical chemistry of such interfacial surfaces is quite complex, and whole
textbooks are devoted to this specialty [15]. Molecules deep within the liquid repel
each other because of their close packing. Molecules at the surface are less dense and
attract each other. Since half of their neighbors are missing, the mechanical effect is
that the surface is in tension. We can account adequately for surface effects in fluid
mechanics with the concept of surface tension.

If a cut of length dL is made in an interfacial surface, equal and opposite forces of
magnitude 8 dL are exposed normal to the cut and parallel to the surface, where 8 is
called the coefficient of surface tension. The dimensions of 8 are {F/L}, with SI units
of newtons per meter and BG units of pounds-force per foot. An alternate concept is
to open up the cut to an area dA; this requires work to be done of amount 8 dA. Thus
the coefficient 8 can also be regarded as the surface energy per unit area of the inter-
face, in N * m/m2 or ft * lbf/ft2.

The two most common interfaces are water-air and mercury-air. For a clean surface
at 20°C # 68°F, the measured surface tension is

0.0050 lbf/ft # 0.073 N/m air-water
0.033 lbf/ft # 0.48 N/m         air-mercury

These are design values and can change considerably if the surface contains contami-
nants like detergents or slicks. Generally 8 decreases with liquid temperature and is
zero at the critical point. Values of 8 for water are given in Fig. 1.8.

If the interface is curved, a mechanical balance shows that there is a pressure dif-
ference across the interface, the pressure being higher on the concave side, as illus-
trated in Fig. 1.9. In Fig. 1.9a, the pressure increase in the interior of a liquid cylinder
is balanced by two surface-tension forces

2RL -p # 28L

or                                                 -p # '
8
R

' (1.31) 

We are not considering the weight of the liquid in this calculation. In Fig. 1.9b, the pres-
sure increase in the interior of a spherical droplet balances a ring of surface-tension force

9R2 -p # 29R8

or -p # '
2
R
8
' (1.32)

We can use this result to predict the pressure increase inside a soap bubble, which has
two interfaces with air, an inner and outer surface of nearly the same radius R:

-pbubble " 2 -pdroplet # '
4
R
8
' (1.33)

Figure 1.9c shows the general case of an arbitrarily curved interface whose principal
radii of curvature are R1 and R2. A force balance normal to the surface will show that
the pressure increase on the concave side is

-p # 8(R1
$ 1 , R2

$ 1) (1.34)
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Fig. 1.8 Surface tension of a clean
air-water interface. Data from Table
A.5.

Fig. 1.9 Pressure change across a curved interface due to surface tension: (a) interior of a liquid cylinder; (b) interior of a spherical
droplet; (c) general curved interface.

Equations (1.31) to (1.33) can all be derived from this general relation; e.g., in
Eq. (1.31), R1 # R and R2 # :.

A second important surface effect is the contact angle ! which appears when a
liquid interface intersects with a solid surface, as in Fig. 1.10. The force balance
would then involve both 8 and !. If the contact angle is less than 90°, the liquid is
said to wet the solid; if ! ; 90°, the liquid is termed nonwetting. For example, wa-
ter wets soap but does not wet wax. Water is extremely wetting to a clean glass sur-
face, with ! " 0°. Like 8, the contact angle ! is sensitive to the actual physico-
chemical conditions of the solid-liquid interface. For a clean mercury-air-glass
interface, ! # 130°.

Example 1.9 illustrates how surface tension causes a fluid interface to rise or fall in
a capillary tube.
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Fig. 1.10 Contact-angle effects at
liquid-gas-solid interface. If ! <
90°, the liquid “wets” the solid; if
! ; 90°, the liquid is nonwetting.

EXAMPLE 1.9

Derive an expression for the change in height h in a circular tube of a liquid with surface ten-
sion 8 and contact angle !, as in Fig. E1.9.

Solution

The vertical component of the ring surface-tension force at the interface in the tube must bal-
ance the weight of the column of fluid of height h

29R8 cos ! # 19R2h

Solving for h, we have the desired result

h # '
28

1
c
R
os !
' Ans.

Thus the capillary height increases inversely with tube radius R and is positive if ! < 90° (wet-
ting liquid) and negative (capillary depression) if ! ; 90°.

Suppose that R # 1 mm. Then the capillary rise for a water-air-glass interface, ! " 0°, 8 #
0.073 N/m, and & # 1000 kg/m3 is

h # # 0.015 (N * s2)/kg # 0.015 m # 1.5 cm

For a mercury-air-glass interface, with ! # 130°, 8 # 0.48 N/m, and & # 13,600 kg/m3, the cap-
illary rise is

h # # $ 0.46 cm

When a small-diameter tube is used to make pressure measurements (Chap. 2), these capillary
effects must be corrected for.

Vapor pressure is the pressure at which a liquid boils and is in equilibrium with its
own vapor. For example, the vapor pressure of water at 68°F is 49 lbf/ft2, while that
of mercury is only 0.0035 lbf/ft2. If the liquid pressure is greater than the vapor

2(0.48)(cos 130°)
'''
13,600(9.81)(0.001)

2(0.073 N/m)(cos 0°)
''''
(1000 kg/m3)(9.81 m/s2)(0.001 m)
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No-Slip and No-Temperature-
Jump Conditions

pressure, the only exchange between liquid and vapor is evaporation at the inter-
face. If, however, the liquid pressure falls below the vapor pressure, vapor bubbles
begin to appear in the liquid. If water is heated to 212°F, its vapor pressure rises to
2116 lbf/ft2, and thus water at normal atmospheric pressure will boil. When the liq-
uid pressure is dropped below the vapor pressure due to a flow phenomenon, we
call the process cavitation. As we shall see in Chap. 2, if water is accelerated from
rest to about 50 ft/s, its pressure drops by about 15 lbf/in2, or 1 atm. This can cause
cavitation.

The dimensionless parameter describing flow-induced boiling is the cavitation 
number

Ca # (1.35)

where pa # ambient pressure
pv # vapor pressure  
V # characteristic flow velocity

Depending upon the geometry, a given flow has a critical value of Ca below which the
flow will begin to cavitate. Values of surface tension and vapor pressure of water are
given in Table A.5. The vapor pressure of water is plotted in Fig. 1.11.

Figure 1.12a shows cavitation bubbles being formed on the low-pressure surfaces
of a marine propeller. When these bubbles move into a higher-pressure region, they
collapse implosively. Cavitation collapse can rapidly spall and erode metallic surfaces
and eventually destroy them, as shown in Fig. 1.12b.

When a fluid flow is bounded by a solid surface, molecular interactions cause the fluid
in contact with the surface to seek momentum and energy equilibrium with that surface.
All liquids essentially are in equilibrium with the surface they contact. All gases are, too,

pa $ pv'
'12'&V2
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Fig. 1.12 Two aspects of cavitation
bubble formation in liquid flows:
(a) Beauty: spiral bubble sheets
form from the surface of a marine
propeller. (Courtesy of the Garfield
Thomas Water Tunnel, Pennsylva-
nia State University); (b) ugliness:
collapsing bubbles erode a pro-
peller surface. (Courtesy of Thomas
T. Huang, David Taylor Research
Center.)



Fig. 1.13 The no-slip condition in
water flow past a thin fixed plate.
The upper flow is turbulent; the
lower flow is laminar. The velocity
profile is made visible by a line of
hydrogen bubbles discharged from
the wire across the flow. [From Il-
lustrated Experiments in Fluid Me-
chanics (The NCFMF Book of Film
Notes), National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., copy-
right 1972.]

except under the most rarefied conditions [8]. Excluding rarefied gases, then, all fluids
at a point of contact with a solid take on the velocity and temperature of that surface

Vfluid ! Vwall Tfluid ! Twall (1.36)

These are called the no-slip and no-temperature-jump conditions, respectively. They
serve as boundary conditions for analysis of fluid flow past a solid surface (Chap. 6).
Figure 1.13 illustrates the no-slip condition for water flow past the top and bottom sur-
faces of a fixed thin plate. The flow past the upper surface is disorderly, or turbulent,
while the lower surface flow is smooth, or laminar.7 In both cases there is clearly no
slip at the wall, where the water takes on the zero velocity of the fixed plate. The ve-
locity profile is made visible by the discharge of a line of hydrogen bubbles from the
wire shown stretched across the flow.

To decrease the mathematical difficulty, the no-slip condition is partially relaxed in
the analysis of inviscid flow (Chap. 8). The flow is allowed to “slip” past the surface
but not to permeate through the surface

Vnormal(fluid) ! Vnormal(solid) (1.37)

while the tangential velocity Vt is allowed to be independent of the wall. The analysis
is much simpler, but the flow patterns are highly idealized.
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7Laminar and turbulent flows are studied in Chaps. 6 and 7.



Speed of Sound In gas flow, one must be aware of compressibility effects (significant density changes
caused by the flow). We shall see in Sec. 4.2 and in Chap. 9 that compressibility be-
comes important when the flow velocity reaches a significant fraction of the speed of
sound of the fluid. The speed of sound a of a fluid is the rate of propagation of small-
disturbance pressure pulses (“sound waves”) through the fluid. In Chap. 9 we shall
show, from momentum and thermodynamic arguments, that the speed of sound is de-
fined by

a2 # #'
0
0
p
&
'$s

# k#'
0
0
p
&
'$T

k # '
c
c

p

v
' (1.38)

This is true for either a liquid or a gas, but it is for gases that the problem of com-
pressibility occurs. For an ideal gas, Eq. (1.10), we obtain the simple formula

aideal gas # (kRT)1/2 (1.39)

where R is the gas constant, Eq. (1.11), and T the absolute temperature. For example,
for air at 20°C, a # {(1.40)[287 m2/(s2 * K)](293 K)}1/2 " 343 m/s (1126 ft/s # 768
mi/h). If, in this case, the air velocity reaches a significant fraction of a, say, 100 m/s,
then we must account for compressibility effects (Chap. 9). Another way to state this
is to account for compressibility when the Mach number Ma # V/a of the flow reaches
about 0.3.

The speed of sound of water is tabulated in Table A.5. The speed of sound of air
(or any approximately perfect gas) is simply calculated from Eq. (1.39).

There are three basic ways to attack a fluid-flow problem. They are equally important
for a student learning the subject, and this book tries to give adequate coverage to each
method:

1. Control-volume, or integral analysis (Chap. 3)
2. Infinitesimal system, or differential analysis (Chap. 4)
3. Experimental study, or dimensional analysis (Chap. 5)

In all cases, the flow must satisfy the three basic laws of mechanics8 plus a thermo-
dynamic state relation and associated boundary conditions:

1. Conservation of mass (continuity)
2. Linear momentum (Newton’s second law)
3. First law of thermodynamics (conservation of energy)
4. A state relation like & # &(p, T)
5. Appropriate boundary conditions at solid surfaces, interfaces, inlets, and exits

In integral and differential analyses, these five relations are modeled mathematically
and solved by computational methods. In an experimental study, the fluid itself per-
forms this task without the use of any mathematics. In other words, these laws are be-
lieved to be fundamental to physics, and no fluid flow is known to violate them.
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8In fluids which are variable mixtures of components, such as seawater, a fourth basic law is required,
conservation of species. For an example of salt conservation analysis, see Chap. 4, Ref. 16.


