2.1 Pressure and Pressure
Gradient

Chapter 2
Pressure Distribution
in a Fluid

Motivation. Many fluid problems do not involve motion. They concern the pressure
distribution in a static fluid and its effect on solid surfaces and on floating and sub-
merged bodies.

When the fluid velocity is zero, denoted as the hydrostatic condition, the pressure
variation is due only to the weight of the fluid. Assuming a known fluid in a given
gravity field, the pressure may easily be calculated by integration. Important applica-
tions in this chapter are (1) pressure distribution in the atmosphere and the oceans, (2)
the design of manometer pressure instruments, (3) forces on submerged flat and curved
surfaces, (4) buoyancy on a submerged body, and (5) the behavior of floating bodies.
The last two result in Archimedes’ principles.

If the fluid is moving in rigid-body motion, such as a tank of liquid which has been
spinning for a long time, the pressure also can be easily calculated, because the fluid
is free of shear stress. We apply this idea here to simple rigid-body accelerations in
Sec. 2.9. Pressure measurement instruments are discussed in Sec. 2.10. As a matter of
fact, pressure also can be easily analyzed in arbitrary (nonrigid-body) motions V(x, y,
z, 1), but we defer that subject to Chap. 4.

In Fig. 1.1 we saw that a fluid at rest cannot support shear stress and thus Mohr’s cir-
cle reduces to a point. In other words, the normal stress on any plane through a fluid
element at rest is equal to a unique value called the fluid pressure p, taken positive for
compression by common convention. This is such an important concept that we shall
review it with another approach.

Figure 2.1 shows a small wedge of fluid at rest of size Ax by Az by As and depth b
into the paper. There is no shear by definition, but we postulate that the pressures p,, p.,
and p, may be different on each face. The weight of the element also may be important.
Summation of forces must equal zero (no acceleration) in both the x and z directions.

S F.=0=pbAz— p,b Assin 0

@.1)
2 F.=0=pbAx—pb Ascos  —+vyb Ax Az
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60 Chapter 2 Pressure Distribution in a Fluid

Fig. 2.1 Equilibrium of a small
wedge of fluid at rest.

Pressure Force on a Fluid
Element

z (up)

Element weight:
dW=pg(3b Ax Az)

0
1 Width b into paper

but the geometry of the wedge is such that
As sin 6 = Az As cos 0 = Ax 2.2)
Substitution into Eq. (2.1) and rearrangement give

Py =DPn  DP.=Pp,t3yAz (2.3)

These relations illustrate two important principles of the hydrostatic, or shear-free, con-
dition: (1) There is no pressure change in the horizontal direction, and (2) there is a
vertical change in pressure proportional to the density, gravity, and depth change. We
shall exploit these results to the fullest, starting in Sec. 2.3.

In the limit as the fluid wedge shrinks to a “point,” Az — 0 and Egs. (2.3) become

Px=D:=Pn =P 2.4)

Since 6 is arbitrary, we conclude that the pressure p at a point in a static fluid is inde-
pendent of orientation.

What about the pressure at a point in a moving fluid? If there are strain rates in a
moving fluid, there will be viscous stresses, both shear and normal in general (Sec.
4.3). In that case (Chap. 4) the pressure is defined as the average of the three normal
stresses o;; on the element

p=" %(O-xx + Oyy + Uzz) (25)

The minus sign occurs because a compression stress is considered to be negative
whereas p is positive. Equation (2.5) is subtle and rarely needed since the great ma-
jority of viscous flows have negligible viscous normal stresses (Chap. 4).

Pressure (or any other stress, for that matter) causes no net force on a fluid element
unless it varies spatially." To see this, consider the pressure acting on the two x faces
in Fig. 2.2. Let the pressure vary arbitrarily

p=px 2z 0 (2.6)

!An interesting application for a large element is in Fig. 3.7.



Fig. 2.2 Net x force on an element
due to pressure variation.
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The net force in the x direction on the element in Fig. 2.2 is given by
9 )
dF,=pdydz — (p + 8_1; dx) dy dz = _B_§ dx dy dz 2.7

In like manner the net force dF), involves —dp/dy, and the net force dF, concerns
—adploz. The total net-force vector on the element due to pressure is

_(_39p .9 | 9p
deress ( 1 ox J ay k 0z dx dy dz (28)
We recognize the term in parentheses as the negative vector gradient of p. Denoting f
as the net force per unit element volume, we rewrite Eq. (2.8) as

fpress = _VP (2.9

Thus it is not the pressure but the pressure gradient causing a net force which must be
balanced by gravity or acceleration or some other effect in the fluid.

The pressure gradient is a surface force which acts on the sides of the element. There
may also be a body force, due to electromagnetic or gravitational potentials, acting on
the entire mass of the element. Here we consider only the gravity force, or weight of
the element

dF ooy = pg dx dy dz
(2.10)
or fgrav =pg

In general, there may also be a surface force due to the gradient, if any, of the vis-
cous stresses. For completeness, we write this term here without derivation and con-
sider it more thoroughly in Chap. 4. For an incompressible fluid with constant viscos-
ity, the net viscous force is

PV PV v
fys = + + = uV?Vv 2.11
VS N«( o 6y2 07 ) I ( )

where VS stands for viscous stresses and w is the coefficient of viscosity from Chap.
1. Note that the term g in Eq. (2.10) denotes the acceleration of gravity, a vector act-
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ing toward the center of the earth. On earth the average magnitude of g is 32.174 ft/s* =
9.807 m/s”.

The total vector resultant of these three forces—pressure, gravity, and viscous
stress—must either keep the element in equilibrium or cause it to move with acceler-
ation a. From Newton’s law, Eq. (1.2), we have

pa = 2 f= fpress + fgrav + fvisc = _Vp + g + I‘LVZV (212)

This is one form of the differential momentum equation for a fluid element, and it is
studied further in Chap. 4. Vector addition is implied by Eq. (2.12): The acceleration
reflects the local balance of forces and is not necessarily parallel to the local-velocity
vector, which reflects the direction of motion at that instant.

This chapter is concerned with cases where the velocity and acceleration are known,
leaving one to solve for the pressure variation in the fluid. Later chapters will take up
the more general problem where pressure, velocity, and acceleration are all unknown.
Rewrite Eq. (2.12) as

Vp=p(g—a) +uV’V=B@xyz1 (2.13)

where B is a short notation for the vector sum on the right-hand side. If V and a =
dV/dt are known functions of space and time and the density and viscosity are known,
we can solve Eq. (2.13) for p(x, y, z, f) by direct integration. By components, Eq. (2.13)
is equivalent to three simultaneous first-order differential equations
ToBlnnnn  eByan  L=Bunann Q)
Since the right-hand sides are known functions, they can be integrated systematically
to obtain the distribution p(x, y, z, f) except for an unknown function of time, which
remains because we have no relation for dp/dt. This extra function is found from a con-
dition of known time variation p(f) at some point (xo, Yo, 2o). If the flow is steady (in-
dependent of time), the unknown function is a constant and is found from knowledge
of a single known pressure p, at a point (xg, Yo, 2Zo). If this sounds complicated, it is
not; we shall illustrate with many examples. Finding the pressure distribution from a
known velocity distribution is one of the easiest problems in fluid mechanics, which
is why we put it in Chap. 2.
Examining Eq. (2.13), we can single out at least four special cases:

1. Flow at rest or at constant velocity: The acceleration and viscous terms vanish
identically, and p depends only upon gravity and density. This is the hydrostatic
condition. See Sec. 2.3.

2. Rigid-body translation and rotation: The viscous term vanishes identically,
and p depends only upon the term p(g — a). See Sec. 2.9.

3. Irrotational motion (V X V = 0): The viscous term vanishes identically, and
an exact integral called Bernoulli’s equation can be found for the pressure distri-
bution. See Sec. 4.9.

4. Arbitrary viscous motion: Nothing helpful happens, no general rules apply, but
still the integration is quite straightforward. See Sec. 6.4.

Let us consider cases 1 and 2 here.



Fig. 2.3 Illustration of absolute,
gage, and vacuum pressure read-
ings.

Gage Pressure and Vacuum
Pressure: Relative Terms
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p (Pascals)
High pressure:
120,000 4 p = 120,000 Pa abs = 30,000 Pa gage
30,000
i Local atmosphere:
90,000 p =90,000 Pa abs = 0 Pa gage = 0 Pa vacuum
40,000
Vacuum pressure:
30,000 T p =50,000 Pa abs = 40,000 Pa vacuum
50,000
0 Absolute zero reference:
1’ (Tension) p =0 Paabs = 90,000 Pa vacuum
ension

Before embarking on examples, we should note that engineers are apt to specify pres-
sures as (1) the absolute or total magnitude or (2) the value relative to the local am-
bient atmosphere. The second case occurs because many pressure instruments are of
differential type and record, not an absolute magnitude, but the difference between the
fluid pressure and the atmosphere. The measured pressure may be either higher or lower
than the local atmosphere, and each case is given a name:

1. p>p., Gage pressure: p(gage) = p — p,
2. p<p, Vacuum pressure: p(vacuum) =p, — p

This is a convenient shorthand, and one later adds (or subtracts) atmospheric pressure
to determine the absolute fluid pressure.

A typical situation is shown in Fig. 2.3. The local atmosphere is at, say, 90,000 Pa,
which might reflect a storm condition in a sea-level location or normal conditions at
an altitude of 1000 m. Thus, on this day, p, = 90,000 Pa absolute = 0 Pa gage = 0 Pa
vacuum. Suppose gage 1 in a laboratory reads p; = 120,000 Pa absolute. This value
may be reported as a gage pressure, p; = 120,000 — 90,000 = 30,000 Pa gage. (One
must also record the atmospheric pressure in the laboratory, since p, changes gradu-
ally.) Suppose gage 2 reads p, = 50,000 Pa absolute. Locally, this is a vacuum pres-
sure and might be reported as p, = 90,000 — 50,000 = 40,000 Pa vacuum. Occasion-
ally, in the Problems section, we will specify gage or vacuum pressure to keep you
alert to this common engineering practice.

If the fluid is at rest or at constant velocity, a = 0 and V>V = 0. Equation (2.13) for
the pressure distribution reduces to

Vp = pg (2.15)

This is a hydrostatic distribution and is correct for all fluids at rest, regardless of their
viscosity, because the viscous term vanishes identically.

Recall from vector analysis that the vector Vp expresses the magnitude and direc-
tion of the maximum spatial rate of increase of the scalar property p. As a result, Vp
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Fig. 2.4 Hydrostatic-pressure distri-
bution. Points a, b, ¢, and d are at
equal depths in water and therefore
have identical pressures. Points A,
B, and C are also at equal depths in
water and have identical pressures
higher than a, b, ¢, and d. Point D
has a different pressure from A, B,
and C because it is not connected
to them by a water path.

is perpendicular everywhere to surfaces of constant p. Thus Eq. (2.15) states that a fluid
in hydrostatic equilibrium will align its constant-pressure surfaces everywhere normal
to the local-gravity vector. The maximum pressure increase will be in the direction of
gravity, i.e., “down.” If the fluid is a liquid, its free surface, being at atmospheric pres-
sure, will be normal to local gravity, or “horizontal.” You probably knew all this be-
fore, but Eq. (2.15) is the proof of it.
In our customary coordinate system z is “up.” Thus the local-gravity vector for small-
scale problems is
g=—gk (2.16)

where g is the magnitude of local gravity, for example, 9.807 m/s>. For these coordi-
nates Eq. (2.15) has the components

ap _ ap _ op_ -

O 0 oy 0 Py pg b% 2.17)
the first two of which tell us that p is independent of x and y. Hence dp/dz can be re-
placed by the total derivative dp/dz, and the hydrostatic condition reduces to

dp _ _
dz v
or P — p1 = *f_y(/: (2.18)
1

Equation (2.18) is the solution to the hydrostatic problem. The integration requires an
assumption about the density and gravity distribution. Gases and liquids are usually
treated differently.

We state the following conclusions about a hydrostatic condition:

Pressure in a continuously distributed uniform static fluid varies only with vertical
distance and is independent of the shape of the container. The pressure is the same
at all points on a given horizontal plane in the fluid. The pressure increases with
depth in the fluid.

An illustration of this is shown in Fig. 2.4. The free surface of the container is atmos-
pheric and forms a horizontal plane. Points a, b, ¢, and d are at equal depth in a horizon-

Atmospheric pressure:

Free surface m

Water
c d
Depth 1 . .
Mercury
1
C D
Depth 2 . °




Effect of Variable Gravity

Hydrostatic Pressure in Liquids

Table 2.1 Specific Weight of Some
Common Fluids
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tal plane and are interconnected by the same fluid, water; therefore all points have the
same pressure. The same is true of points A, B, and C on the bottom, which all have the
same higher pressure than at a, b, ¢, and d. However, point D, although at the same depth
as A, B, and C, has a different pressure because it lies beneath a different fluid, mercury.

For a spherical planet of uniform density, the acceleration of gravity varies inversely
as the square of the radius from its center

ro E
g = 2) 2.19)
where r is the planet radius and g, is the surface value of g. For earth, ry = 3960
statute mi = 6400 km. In typical engineering problems the deviation from r, extends
from the deepest ocean, about 11 km, to the atmospheric height of supersonic transport
operation, about 20 km. This gives a maximum variation in g of (6400/6420)2, or 0.6
percent. We therefore neglect the variation of g in most problems.

Liquids are so nearly incompressible that we can neglect their density variation in hy-
drostatics. In Example 1.7 we saw that water density increases only 4.6 percent at the
deepest part of the ocean. Its effect on hydrostatics would be about half of this, or 2.3
percent. Thus we assume constant density in liquid hydrostatic calculations, for which
Eq. (2.18) integrates to

Liquids: p2—P1= —Hz2 — 21) (2.20)
P2 _ D
or L — =
R

We use the first form in most problems. The quantity vy is called the specific weight of
the fluid, with dimensions of weight per unit volume; some values are tabulated in
Table 2.1. The quantity p/vy is a length called the pressure head of the fluid.

For lakes and oceans, the coordinate system is usually chosen as in Fig. 2.5, with
z = 0 at the free surface, where p equals the surface atmospheric pressure p,. When

Specific weight y

at 68°F = 20°C

Fluid Ibf/ft? N/m*
Air (at 1 atm) 0.0752 11.8
Ethyl alcohol 49.2 7,733
SAE 30 oil 55.5 8,720
Water 62.4 9,790
Seawater 64.0 10,050
Glycerin 78.7 12,360
Carbon tetrachloride 99.1 15,570

Mercury 846 133,100




66 Chapter 2 Pressure Distribution in a Fluid

Fig. 2.5 Hydrostatic-pressure distri-
bution in oceans and atmospheres.

The Mercury Barometer

V4
+b p=p,—bVu
Air
v Free surface: Z=0,p=p,
= 0 =
l Water
g
_h p :pa + thater

we introduce the reference value (py, z;) = (pa, 0), Eq. (2.20) becomes, for p at any
(negative) depth z,

Lakes and oceans: P=DPa— Y (2.21)

where 7 is the average specific weight of the lake or ocean. As we shall see, Eq. (2.21)
holds in the atmosphere also with an accuracy of 2 percent for heights z up to 1000 m.

EXAMPLE 2.1

Newfound Lake, a freshwater lake near Bristol, New Hampshire, has a maximum depth of 60
m, and the mean atmospheric pressure is 91 kPa. Estimate the absolute pressure in kPa at this
maximum depth.

Solution

From Table 2.1, take y = 9790 N/m>. With p, = 91 kPaand z = —60 m, Eq. (2.21) predicts that
the pressure at this depth will be

1 kN
1000 N

p = 91 kN/m? — (9790 N/m*)(—60 m)

= 91 kPa + 587 kN/m? = 678 kPa Ans.

By omitting p, we could state the result as p = 587 kPa (gage).

The simplest practical application of the hydrostatic formula (2.20) is the barometer
(Fig. 2.6), which measures atmospheric pressure. A tube is filled with mercury and in-
verted while submerged in a reservoir. This causes a near vacuum in the closed upper
end because mercury has an extremely small vapor pressure at room temperatures (0.16
Pa at 20°C). Since atmospheric pressure forces a mercury column to rise a distance &
into the tube, the upper mercury surface is at zero pressure.



p,=0

(Mercury has a very
low vapor pressure.)

pP,=p,

(The mercury is in
contact with the

atmosphere.)

Z
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Mercury

(a) (b)

Fig. 2.6 A barometer measures local absolute atmospheric pressure: (@) the height of a mercury column is pro-
portional to p,.,; (b) a modern portable barometer, with digital readout, uses the resonating silicon element of
Fig. 2.28c. (Courtesy of Paul Lupke, Druck Inc.)

Hydrostatic Pressure in Gases

From Fig. 2.6, Eq. (2.20) applies with p; = 0 at z; = h and p, = p, at 2, = O:
Pa — 0= _YM(O —h)

or h=2Le (2.22)
Ym

At sea-level standard, with p, = 101,350 Pa and vy, = 133,100 N/m? from Table 2.1,

the barometric height is 2 = 101,350/133,100 = 0.761 m or 761 mm. In the United

States the weather service reports this as an atmospheric “pressure” of 29.96 inHg

(inches of mercury). Mercury is used because it is the heaviest common liquid. A wa-

ter barometer would be 34 ft high.

Gases are compressible, with density nearly proportional to pressure. Thus density must
be considered as a variable in Eq. (2.18) if the integration carries over large pressure
changes. It is sufficiently accurate to introduce the perfect-gas law p = pRT in Eq.
(2.18)

a _ P
dz P87 TRré
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Part (a)

Separate the variables and integrate between points 1 and 2:

> dp P2 g [*dz
2= & = 2.23
f] D D1 RJl T 2.23)

The integral over z requires an assumption about the temperature variation 7(z). One
common approximation is the isothermal atmosphere, where T = T:

222
P2=D1 eXP[_g( ;To 1)]

The quantity in brackets is dimensionless. (Think that over; it must be dimensionless,
right?) Equation (2.24) is a fair approximation for earth, but actually the earth’s mean
atmospheric temperature drops off nearly linearly with z up to an altitude of about
36,000 ft (11,000 m):

(2.24)

T~T,— Bz (2.25)

Here T, is sea-level temperature (absolute) and B is the lapse rate, both of which vary
somewhat from day to day. By international agreement [1] the following standard val-
ues are assumed to apply from O to 36,000 ft:

Ty = 518.69°R = 288.16 K = 15°C
B = 0.003566°R/ft = 0.00650 K/m (2.26)

This lower portion of the atmosphere is called the troposphere. Introducing Eq. (2.25)
into (2.23) and integrating, we obtain the more accurate relation

Bz g/(RB) g
p= p(,(l — T0> where EE = 5.26 (air) (2.27)

in the troposphere, with z = 0 at sea level. The exponent g/(RB) is dimensionless (again
it must be) and has the standard value of 5.26 for air, with R = 287 m?/(s? - K).

The U.S. standard atmosphere [1] is sketched in Fig. 2.7. The pressure is seen to be
nearly zero at z = 30 km. For tabulated properties see Table A.6.

EXAMPLE 2.2

If sea-level pressure is 101,350 Pa, compute the standard pressure at an altitude of 5000 m, us-
ing (a) the exact formula and (b) an isothermal assumption at a standard sea-level temperature
of 15°C. Is the isothermal approximation adequate?

Solution

Use absolute temperature in the exact formula, Eq. (2.27):

_ [, _ 000650 K/m)(5000 m)
P=Pa 288.16 K

5.26
} = (101,350 Pa)(0.8872)2¢

= 101,350(0.52388) = 54,000 Pa Ans. (a)

This is the standard-pressure result given at z = 5000 m in Table A.6.



Fig. 2.7 Temperature and pressure
distribution in the U.S. standard at-
mosphere. (From Ref. 1.)

Part (b)

Is the Linear Formula Adequate
for Gases?
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If the atmosphere were isothermal at 288.16 K, Eq. (2.24) would apply:

~ _8z\ _ ~_(9-807 m/s*)(5000 m)
P = Da exp( RT) = (101,350 Pa) exp{ 1287 m2/(s% - K)|(288.16 K)

= (101,350 Pa) exp( — 0.5929) = 60,100 Pa Ans. (b)

This is 11 percent higher than the exact result. The isothermal formula is inaccurate in the tro-
posphere.

The linear approximation from Eq. (2.20) or (2.21), Ap = +y Az, is satisfactory for lig-
uids, which are nearly incompressible. It may be used even over great depths in the
ocean. For gases, which are highly compressible, it is valid only over moderate changes
in altitude.

The error involved in using the linear approximation (2.21) can be evaluated by ex-
panding the exact formula (2.27) into a series

_Bz\'_ . Bz n(n— 1) (Bz\>
(1 )—1 "t (To) (2.28)

where n = g/(RB). Introducing these first three terms of the series into Eq. (2.27) and
rearranging, we obtain

”_1ﬁ+---) (2.29)

p=pa—7az<1 T2 T,
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2.4 Application to Manometry

A Memory Device: Up Versus
Down

Fig. 2.8 Evaluating pressure
changes through a column of multi-
ple fluids.

Thus the error in using the linear formula (2.21) is small if the second term in paren-
theses in (2.29) is small compared with unity. This is true if

27,

<L 1B

= 20,800 m (2.30)

We thus expect errors of less than 5 percent if z or 8z is less than 1000 m.

From the hydrostatic formula (2.20), a change in elevation z, — z; of a liquid is equiv-
alent to a change in pressure (p, — p;)/7y. Thus a static column of one or more liquids
or gases can be used to measure pressure differences between two points. Such a de-
vice is called a manometer. If multiple fluids are used, we must change the density in
the formula as we move from one fluid to another. Figure 2.8 illustrates the use of the
formula with a column of multiple fluids. The pressure change through each fluid is
calculated separately. If we wish to know the total change ps — p;, we add the suc-
cessive changes p, — p1, p3 — P2, P4 — P3, and ps — p4. The intermediate values of p
cancel, and we have, for the example of Fig. 2.8,

Ps —P1 =~ Y22 = 21) — Ylz3 —22) — Yolza — 23) — Ymlzs —z4) (2.31)

No additional simplification is possible on the right-hand side because of the dif-
ferent densities. Notice that we have placed the fluids in order from the lightest
on top to the heaviest at bottom. This is the only stable configuration. If we attempt
to layer them in any other manner, the fluids will overturn and seek the stable
arrangement.

The basic hydrostatic relation, Eq. (2.20), is mathematically correct but vexing to en-
gineers, because it combines two negative signs to have the pressure increase down-
ward. When calculating hydrostatic pressure changes, engineers work instinctively by
simply having the pressure increase downward and decrease upward. Thus they use the
following mnemonic, or memory, device, first suggested to the writer by Professor John

Known pressure p,
z=z —

Oil,

) Po — PP =P8 - 1)
Water,

N ) 4 __ P3=Py=- P83 2))

Glycerin, p,

2y & _ p4*p3:7p(;g(z4*13)
Mercury, p,

ZS M — p5_p4:_ng(Z5_Z4)

Sum = ps-p,



Fig. 2.9 Simple open manometer
for measuring p, relative to atmos-
pheric pressure.
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Open, p,
\ /
Xy PTP,
Py
Py —
Jump across ) )
P — | |——— | |— p=p,atz=z influid 2
Py
Foss of Michigan State University:
Pdown = I)“/] + ')/‘ A: (232)

Thus, without worrying too much about which point is “z;” and which is “z,”, the for-
mula simply increases or decreases the pressure according to whether one is moving
down or up. For example, Eq. (2.31) could be rewritten in the following “multiple in-
crease” mode:

ps=p1+ ’)’0|Z1 _Zzl + Yw|Zz_23| + 7G|Z3—Z4| + 7M|Z4—25|

That is, keep adding on pressure increments as you move down through the layered
fluid. A different application is a manometer, which involves both “up” and “down”
calculations.

Figure 2.9 shows a simple open manometer for measuring p, in a closed chamber
relative to atmospheric pressure p,, in other words, measuring the gage pressure. The
chamber fluid p; is combined with a second fluid p,, perhaps for two reasons: (1) to
protect the environment from a corrosive chamber fluid or (2) because a heavier fluid
p> will keep z, small and the open tube can be shorter. One can, of course, apply the
basic hydrostatic formula (2.20). Or, more simply, one can begin at A, apply Eq. (2.32)
“down” to z;, jump across fluid 2 (see Fig. 2.9) to the same pressure p;, and then use
Eq. (2.32) “up” to level z,:

PA+71|ZA_21| _'Yz|Zl_Zz| = P2 = Pam (2.33)

The physical reason that we can “jump across” at section 1 in that a continuous length
of the same fluid connects these two equal elevations. The hydrostatic relation (2.20)
requires this equality as a form of Pascal’s law:

Any two points at the same elevation in a continuous mass of the same static fluid
will be at the same pressure.

This idea of jumping across to equal pressures facilitates multiple-fluid problems.

EXAMPLE 2.3

The classic use of a manometer is when two U-tube legs are of equal length, as in Fig. E2.3,
and the measurement involves a pressure difference across two horizontal points. The typical ap-
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E2.3

Fig. 2.10 A complicated multiple-

fluid manometer to relate p, to pg.
This system is not especially prac-
tical but makes a good homework

or examination problem.

Flow device

— (a) b)) ———
L
pl\ h
Pr—T

plication is to measure pressure change across a flow device, as shown. Derive a formula for the
pressure difference p, — p, in terms of the system parameters in Fig. E2.3.

Solution

Using our “up-down” concept as in Eq. (2.32), start at (a), evaluate pressure changes around the
U-tube, and end up at (b):

Pa+ pigL + pigh — pygh — pigL = py,

or Pa = Po = (P2 — p1gh Ans.
The measurement only includes 4, the manometer reading. Terms involving L drop out. Note the
appearance of the difference in densities between manometer fluid and working fluid. It is a com-
mon student error to fail to subtract out the working fluid density p;—a serious error if both
fluids are liquids and less disastrous numerically if fluid 1 is a gas. Academically, of course,
such an error is always considered serious by fluid mechanics instructors.

Although Ex. 2.3, because of its popularity in engineering experiments, is some-
times considered to be the “manometer formula,” it is best not to memorize it but
rather to adapt Eq. (2.20) or (2.32) to each new multiple-fluid hydrostatics problem.
For example, Fig. 2.10 illustrates a multiple-fluid manometer problem for finding the
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Jump across

250 N et e T

P

2y Dy

I Py
Jump across
———— T — I P

Py —
Jump across

Ly Py —Tr>— "~ T %P3

Py

Py



E24

2.4 Application to Manometry 73

difference in pressure between two chambers A and B. We repeatedly apply Eq. (2.20),
jumping across at equal pressures when we come to a continuous mass of the same
fluid. Thus, in Fig. 2.10, we compute four pressure differences while making three jumps:

Pa— P = Pa—p1) T (@1 —p2)+ P2—p3)+ (p3—ps)
= —vi(za —21) = 2(z1 — 22) — v3(z2 — 23) — valzz — z8) (2.34)

The intermediate pressures p; 3 cancel. It looks complicated, but really it is merely
sequential. One starts at A, goes down to 1, jumps across, goes up to 2, jumps across,
goes down to 3, jumps across, and finally goes up to B.

EXAMPLE 2.4

Pressure gage B is to measure the pressure at point A in a water flow. If the pressure at B is 87
kPa, estimate the pressure at A, in kPa. Assume all fluids are at 20°C. See Fig. E2.4.

SAE 30 oil

Mercury 6.cm

Water

flow 11 cm

Solution

First list the specific weights from Table 2.1 or Table A.3:
YVoater = 9790 N/m? Ymercury = 133,100 N/m* vy, = 8720 N/m’
Now proceed from A to B, calculating the pressure change in each fluid and adding:
pa = Yw(ADw — ym(ADy — Yo(AZ)o = ps
or  ps— (9790 N/m*)(— 0.05 m) — (133,100 N/m?)(0.07 m) — (8720 N/m*)(0.06 m)
= pa +489.5 Pa — 9317 Pa — 523.2 Pa = pp = 87,000 Pa

where we replace N/m? by its short name, Pa. The value Az, = 0.07 m is the net elevation
change in the mercury (11 cm — 4 cm). Solving for the pressure at point A, we obtain

pa = 96,351 Pa = 96.4 kPa Ans.

The intermediate six-figure result of 96,351 Pa is utterly fatuous, since the measurements
cannot be made that accurately.
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2.5 Hydrostatic Forces on
Plane Surfaces

Fig. 2.11 Hydrostatic force and
center of pressure on an arbitrary
plane surface of area A inclined at
an angle 6 below the free surface.

In making these manometer calculations we have neglected the capillary-height
changes due to surface tension, which were discussed in Example 1.9. These effects
cancel if there is a fluid interface, or meniscus, on both sides of the U-tube, as in Fig.
2.9. Otherwise, as in the right-hand U-tube of Fig. 2.10, a capillary correction can be
made or the effect can be made negligible by using large-bore ( = 1 c¢m) tubes.

A common problem in the design of structures which interact with fluids is the com-
putation of the hydrostatic force on a plane surface. If we neglect density changes in
the fluid, Eq. (2.20) applies and the pressure on any submerged surface varies linearly
with depth. For a plane surface, the linear stress distribution is exactly analogous to
combined bending and compression of a beam in strength-of-materials theory. The hy-
drostatic problem thus reduces to simple formulas involving the centroid and moments
of inertia of the plate cross-sectional area.

Figure 2.11 shows a plane panel of arbitrary shape completely submerged in a lig-
uid. The panel plane makes an arbitrary angle 6 with the horizontal free surface, so
that the depth varies over the panel surface. If % is the depth to any element area dA
of the plate, from Eq. (2.20) the pressure there is p = p, + yh.

To derive formulas involving the plate shape, establish an xy coordinate system in
the plane of the plate with the origin at its centroid, plus a dummy coordinate £ down
from the surface in the plane of the plate. Then the total hydrostatic force on one side
of the plate is given by

F=[pda=[(p,+ vy da =pa +y [nda (2.35)

The remaining integral is evaluated by noticing from Fig. 2.11 that 4 = £ sin 0 and,

Free surface pP=p,

pe— 7
- \
0 \> e \
\
i \
P Ve \
\
h(x,y) e \
7
h - \
Resultant cG pd \
. s \
force: \
F= Pcg A

Plan view of arbitrary plane surface



Fig. 2.12 The hydrostatic-pressure
force on a plane surface is equal,
regardless of its shape, to the resul-
tant of the three-dimensional linear
pressure distribution on that surface
F = pcGA.
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by definition, the centroidal slant distance from the surface to the plate is

1
S = f §dA (2.36)

Therefore, since 6 is constant along the plate, Eq. (2.35) becomes

F=paA+'ysin9f§dA=paA+ysinOfch (2.37)

Finally, unravel this by noticing that {cg sin 6 = hcg, the depth straight down from
the surface to the plate centroid. Thus

F = p,A + vhegA = (pa + Yheg)A = pecA (2.38)

The force on one side of any plane submerged surface in a uniform fluid equals the
pressure at the plate centroid times the plate area, independent of the shape of the plate
or the angle 6 at which it is slanted.

Equation (2.38) can be visualized physically in Fig. 2.12 as the resultant of a lin-
ear stress distribution over the plate area. This simulates combined compression and
bending of a beam of the same cross section. It follows that the “bending” portion of
the stress causes no force if its “neutral axis” passes through the plate centroid of area.
Thus the remaining “compression’ part must equal the centroid stress times the plate
area. This is the result of Eq. (2.38).

However, to balance the bending-moment portion of the stress, the resultant force
F does not act through the centroid but below it toward the high-pressure side. Its line
of action passes through the center of pressure CP of the plate, as sketched in Fig. 2.11.
To find the coordinates (xcp, ycp), we sum moments of the elemental force p dA about
the centroid and equate to the moment of the resultant F. To compute ycp, we equate

Fyce = [yp dA = [y(p, + vé sin 6) dA = ysin 0 [yé da (2.39)

The term [ p,y dA vanishes by definition of centroidal axes. Introducing & = &0 —y,

Pressure distribution

/

Arbitrary
plane surface
Centroid of the plane surface of area A
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Fig. 2.13 Centroidal moments of
inertia for various cross sections:
(a) rectangle, (b) circle, (c) trian-
gle, and (d) semicircle.

we obtain
Fycp = 1y sin 0(§CG [yaa -y dA) =~ ysin 01, (2.40)

where again [ y dA = 0 and I, is the area moment of inertia of the plate area about its
centroidal x axis, computed in the plane of the plate. Substituting for F gives the result
Ly
PccA
The negative sign in Eq. (2.41) shows that ycp is below the centroid at a deeper level
and, unlike F, depends upon angle 6. If we move the plate deeper, ycp approaches the

centroid because every term in Eq. (2.41) remains constant except pcg, which increases.
The determination of xcp is exactly similar:

Yep = —7sin 0 (2.41)

Fxcp = pr dA = |x[p, + y(écg — y) sin 0] dA

—sin ofxy dA = —ysin 01, (2.42)

where I, is the product of inertia of the plate, again computed in the plane of the
plate. Substituting for F gives /
Xcp = —ysin § —2— (2.43)
Pc
For positive I,,, xcp is negative because the dominant pressure force acts in the third,
or lower left, quadrant of the panel. If I,, = 0, usually implying symmetry, xcp = 0
and the center of pressure lies directly below the centroid on the y axis.

y % A=bL A =R’
bL? R*
—éﬁX* Ixx=ﬁ L= 71.'4
L
: 5 Ixy = O Ixy = 0
|
i
b1 b I
2 2
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E2.5a

Part (a)

Part (b)

2.5 Hydrostatic Forces on Plane Surfaces 77

In most cases the ambient pressure p, is neglected because it acts on both sides of the
plate; e.g., the other side of the plate is inside a ship or on the dry side of a gate or dam.
In this case pcg = Yhcg, and the center of pressure becomes independent of specific weight
I.. sin 0 I, sin 0

Xep = —28 2.44
h C (,;A *Cp h C GA ( )

F = yhcA Ycp = —

Figure 2.13 gives the area and moments of inertia of several common cross sections
for use with these formulas.

EXAMPLE 2.5

The gate in Fig. E2.5a is 5 ft wide, is hinged at point B, and rests against a smooth wall at point
A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal force P exerted
by the wall at point A, and (c) the reactions at the hinge B.

Wall
\Y4 Pa
Seawater:
64 1bf/ft3
15 ft
Gate
6 ft
B o
/\’/
Hinge L;S ftg"
Solution

By geometry the gate is 10 ft long from A to B, and its centroid is halfway between, or at eleva-
tion 3 ft above point B. The depth /g is thus 15 — 3 = 12 ft. The gate area is 5(10) = 50 ft>. Ne-
glect p, as acting on both sides of the gate. From Eq. (2.38) the hydrostatic force on the gate is

F = pccA = yhegA = (64 Iof/ft*)(12 ft)(50 ft?) = 38,400 Ibf Ans. (a)

First we must find the center of pressure of F. A free-body diagram of the gate is shown in Fig.
E2.5b. The gate is a rectangle, hence

bL* _ (5 f(10 ft)*

_ 4
o 2 =417 ft

L,=0 and I, =

The distance / from the CG to the CP is given by Eq. (2.44) since p,, is neglected.

L,sinf (417 fh(o)
hecA (12 ££)(50 ft%)

I= —yep = + = 0417 ft
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E2.5b

Part (c)

E2.6

>

\(l CG

CP L=10ft

The distance from point B to force F is thus 10 — [ — 5 = 4.583 ft. Summing moments coun-
terclockwise about B gives

PL sin 0 — F(5 — [) = P(6 ft) — (38,400 1bf)(4.583 ft) = 0
or P = 29,300 1bf Ans. (b)
With F and P known, the reactions B, and B, are found by summing forces on the gate
3 F,=0=B,+ Fsin § — P = B, + 38,400(0.6) — 29,300
or B, = 6300 Ibf
S F.=0=B,— Fcos § =B, — 38,400(0.8)
or B, = 30,700 1bf Ans. (c)

This example should have reviewed your knowledge of statics.

EXAMPLE 2.6

A tank of oil has a right-triangular panel near the bottom, as in Fig. E2.6. Omitting p,, find the
(a) hydrostatic force and (b) CP on the panel.

P, Z L

5m 0il: p = 800 kg/m?

11 m

I
|
|
16 m
|
|




Part (a)

Part (b)

2.6 Hydrostatic Forces on
Curved Surfaces

Fig. 2.14 Computation of hydro-
static force on a curved surface:
(a) submerged curved surface; (b)
free-body diagram of fluid above
the curved surface.
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Solution

The triangle has properties given in Fig. 2.13c. The centroid is one-third up (4 m) and one-third
over (2 m) from the lower left corner, as shown. The area is

26 m)(12 m) = 36 m?
The moments of inertia are

b (6 m(12 m)°?

—_— = 4
Ixx - 36 36 288 m
_ 2 _ 2
and Iy = b(b 722s)L _ (6 m)[6 m 722(6 m)](12 m) — 7

The depth to the centroid is hicg = 5 + 4 = 9 m; thus the hydrostatic force from Eq. (2.44) is
F = pghcgA = (800 kg/m>)(9.807 m/s*)(9 m)(36 m?)
= 2.54 X 10% (kg - m)/s*> = 2.54 X 10° N = 2.54 MN Ans. (a)
The CP position is given by Egs. (2.44):

_ I,sinf (288 m*)(sin30°) _
Ycp — hCGA = (9 m)(36 mz) = 0.444 m

s (9 m)(36 m?)

Lysin 6 _ _ (=72mY(sin 309 _ o0y Ans. (b)

The resultant force F = 2.54 MN acts through this point, which is down and to the right of the
centroid, as shown in Fig. E2.6.

The resultant pressure force on a curved surface is most easily computed by separat-
ing it into horizontal and vertical components. Consider the arbitrary curved surface
sketched in Fig. 2.14a. The incremental pressure forces, being normal to the local area
element, vary in direction along the surface and thus cannot be added numerically. We

4, |
Wair I
ANAAAAAA A

e

Curved surface
projection onto
Fy vertical plane

(@)
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E2.7a

could sum the separate three components of these elemental pressure forces, but it turns
out that we need not perform a laborious three-way integration.

Figure 2.14b shows a free-body diagram of the column of fluid contained in the ver-
tical projection above the curved surface. The desired forces F; and Fy are exerted by
the surface on the fluid column. Other forces are shown due to fluid weight and hori-
zontal pressure on the vertical sides of this column. The column of fluid must be in
static equilibrium. On the upper part of the column bcde, the horizontal components
F exactly balance and are not relevant to the discussion. On the lower, irregular por-
tion of fluid abc adjoining the surface, summation of horizontal forces shows that the
desired force F due to the curved surface is exactly equal to the force Fj; on the ver-
tical left side of the fluid column. This left-side force can be computed by the plane-
surface formula, Eq. (2.38), based on a vertical projection of the area of the curved
surface. This is a general rule and simplifies the analysis:

The horizontal component of force on a curved surface equals the force on the plane
area formed by the projection of the curved surface onto a vertical plane normal to
the component.

If there are two horizontal components, both can be computed by this scheme.
Summation of vertical forces on the fluid free body then shows that

FV = Wl + W2 + Wair (245)
We can state this in words as our second general rule:

The vertical component of pressure force on a curved surface equals in magnitude
and direction the weight of the entire column of fluid, both liquid and atmosphere,
above the curved surface.

Thus the calculation of Fy involves little more than finding centers of mass of a col-
umn of fluid—perhaps a little integration if the lower portion abc has a particularly
vexing shape.

EXAMPLE 2.7

A dam has a parabolic shape z/zo = (x/x0)* as shown in Fig. E2.7a, with xy = 10 ft and zo = 24
ft. The fluid is water, y = 62.4 1bf/ft’, and atmospheric pressure may be omitted. Compute the

Do =0 Ibf/ft? gage

ANAAAAAAAAAAANAT '

Fy

2 Py
w,&).m, '—A——x _Y

LiX();P
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forces Fy and Fy on the dam and the position CP where they act. The width of the dam is
50 ft.

Solution

The vertical projection of this curved surface is a rectangle 24 ft high and 50 ft wide, with its
centroid halfway down, or hcg = 12 ft. The force Fy; is thus

Fu = YheoApoj = (62.4 1bf/f)(12 f6)(24 f6)(50 ft)
= 899,000 1bf = 899 X 10> Ibf Ans.

The line of action of F is below the centroid by an amount

Io.sin @ (50 f)(24 f)’(sin 90°)
hecAproj (12 fO)(24 fiy(50 fry

Yep = —4 ft
Thus Fyis 12 + 4 = 16 ft, or two-thirds, down from the free surface or 8 ft from the bottom,
as might have been evident by inspection of the triangular pressure distribution.

The vertical component Fy equals the weight of the parabolic portion of fluid above the
curved surface. The geometric properties of a parabola are shown in Fig. E2.7b. The weight of
this amount of water is

Fy = v(3x020b) = (62.4 1bf/ft*)(3)(10 ft)(24 ft)(50 ft)

= 499,000 Ibf = 499 X 10> Ibf Ans.
Hb———————————

|
Are x;)ZO |
3z |
- [ |
' Fy |
| |
| |
| |
| Parabola :
| |

0 3xq xo=10ft

This acts downward on the surface at a distance 3x,/8 = 3.75 ft over from the origin of coordi-
nates. Note that the vertical distance 3zo/5 in Fig. E2.7b is irrelevant.
The total resultant force acting on the dam is
F = (Fj + )" = [(499)> + (899)°]"* = 1028 X 10° Ibf
As seen in Fig. E2.7c, this force acts down and to the right at an angle of 29° = tan™' §g. The
force F passes through the point (x, z) = (3.75 ft, 8 ft). If we move down along the 29° line un-
til we strike the dam, we find an equivalent center of pressure on the dam at

Xep = 543t zep = 7.07 ft Ans.

This definition of CP is rather artificial, but this is an unavoidable complication of dealing with
a curved surface.
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E2.7¢

2.7 Hydrostatic Forces in
Layered Fluids

Fig. 2.15 Hydrostatic forces on a
surface immersed in a layered fluid
must be summed in separate pieces.

Z

/ Resultant = 1028 x 10° 1bf acts along z = 10.083 — 0.5555x

. 3751t
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The formulas for plane and curved surfaces in Secs. 2.5 and 2.6 are valid only for a
fluid of uniform density. If the fluid is layered with different densities, as in Fig. 2.15,
a single formula cannot solve the problem because the slope of the linear pressure dis-
tribution changes between layers. However, the formulas apply separately to each layer,
and thus the appropriate remedy is to compute and sum the separate layer forces and
moments.

Consider the slanted plane surface immersed in a two-layer fluid in Fig. 2.15. The
slope of the pressure distribution becomes steeper as we move down into the denser

o~

v z=0
Pi<P,
Fluid 1
Py
p2
Fluid 2

‘\‘\\ Py
| p=p—-Pgz-2z))
L — P, =D *ng(zzle)
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second layer. The total force on the plate does not equal the pressure at the centroid
times the plate area, but the plate portion in each layer does satisfy the formula, so that
we can sum forces to find the total:

F=3F, =% pegA (2.46)

Similarly, the centroid of the plate portion in each layer can be used to locate the cen-
ter of pressure on that portion

pig sin 0; L.
PcG;Ai

_plg sin 01' Ixyi
Pca;Ai

Yep; = Xcp; (2.47)
These formulas locate the center of pressure of that particular F; with respect to the
centroid of that particular portion of plate in the layer, not with respect to the centroid
of the entire plate. The center of pressure of the total force F' = 3, F; can then be found
by summing moments about some convenient point such as the surface. The follow-

ing example will illustrate.

EXAMPLE 2.8

A tank 20 ft deep and 7 ft wide is layered with 8 ft of oil, 6 ft of water, and 4 ft of mercury.
Compute (a) the total hydrostatic force and (b) the resultant center of pressure of the fluid on
the right-hand side of the tank.

Solution

Divide the end panel into three parts as sketched in Fig. E2.8, and find the hydrostatic pressure
at the centroid of each part, using the relation (2.38) in steps as in Fig. E2.8:

11 ft

16 ft

2

4 ft A3)

Pca, = (55.0 Ibf/fE)(4 ft) = 220 Ibf/f
Pca, = (55.0)(8) + 62.4(3) = 627 Ibf/ft®
Pea, = (55.0)(8) + 62.4(6) + 846(2) = 2506 Ibf/ft>
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Part (b)

2.8 Buoyancy and Stability

These pressures are then multiplied by the respective panel areas to find the force on each portion:
F) = pca,Ar = (220 Ibf/ft)(8 ft)(7 ft) = 12,300 Ibf
F> = pcg,Ar = 627(6)(7) = 26,300 Ibf
F3 = pcgAs = 2506(4)(7) = 70,200 1bf

F =3 F; = 108,800 Ibf Ans. (a)

Equations (2.47) can be used to locate the CP of each force F;, noting that 6 = 90° and sin 6 =
1 for all parts. The moments of inertia are I,,, = (7 ft)(8 ft)*/12 = 298.7 ft*, I,,, = 7(6)*/12 =
126.0 ft*, and Loy = 7(4)*/12 = 37.3 ft*. The centers of pressure are thus at

Piglee (5.0 Ibf/f)(298.7 ft!) _

Yo, = T = 12.300 Tof = 133t
_ _624(126.0) _ _ _ _846(373) _ _
ycpz = 26’300 0.30 ft yCP3 70’200 0.45 ft

This locates zcp, = —4 — 1.33 = =533 ft, zcp, = —11 —0.30 = —11.30 ft, and zcp, =
—16 — 0.45 = —16.45 ft. Summing moments about the surface then gives

2 F iZcp; — Fzcp

or 12,300(—5.33) + 26,300(—11.30) + 70,200(—16.45) = 108,800zcp
1,518,000
or cp = —W = —13.95 ft Ans. (b)

The center of pressure of the total resultant force on the right side of the tank lies 13.95 ft be-
low the surface.

The same principles used to compute hydrostatic forces on surfaces can be applied to
the net pressure force on a completely submerged or floating body. The results are the
two laws of buoyancy discovered by Archimedes in the third century B.C.:

1. A body immersed in a fluid experiences a vertical buoyant force equal to the
weight of the fluid it displaces.

2. A floating body displaces its own weight in the fluid in which it floats.

These two laws are easily derived by referring to Fig. 2.16. In Fig. 2.16a, the body
lies between an upper curved surface 1 and a lower curved surface 2. From Eq. (2.45)
for vertical force, the body experiences a net upward force

Fp=Fy(2) — Fy(l)
= (fluid weight above 2) — (fluid weight above 1)
= weight of fluid equivalent to body volume (2.48)

Alternatively, from Fig. 2.16b, we can sum the vertical forces on elemental vertical
slices through the immersed body:

Fo=| (2= p0 dAu=—v [z = 21) dAy = ((body volume) (2.49)
ody



Fig. 2.16 Two different approaches
to the buoyant force on an arbitrary
immersed body: (a) forces on up-
per and lower curved surfaces; (b)
summation of elemental vertical-
pressure forces.
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These are identical results and equivalent to law 1 above.

Equation (2.49) assumes that the fluid has uniform specific weight. The line of ac-
tion of the buoyant force passes through the center of volume of the displaced body;
i.e., its center of mass is computed as if it had uniform density. This point through
which Fp acts is called the center of buoyancy, commonly labeled B or CB on a draw-
ing. Of course, the point B may or may not correspond to the actual center of mass of
the body’s own material, which may have variable density.

Equation (2.49) can be generalized to a layered fluid (LF) by summing the weights
of each layer of density p; displaced by the immersed body:

(Fphip = 2 pig(displaced volume), (2.50)

Each displaced layer would have its own center of volume, and one would have to sum
moments of the incremental buoyant forces to find the center of buoyancy of the im-
mersed body.

Since liquids are relatively heavy, we are conscious of their buoyant forces, but gases
also exert buoyancy on any body immersed in them. For example, human beings have
an average specific weight of about 60 Ibf/ft>. We may record the weight of a person
as 180 Ibf and thus estimate the person’s total volume as 3.0 ft*. However, in so doing
we are neglecting the buoyant force of the air surrounding the person. At standard con-
ditions, the specific weight of air is 0.0763 Ibf/ft’; hence the buoyant force is approxi-
mately 0.23 Ibf. If measured in vacuo, the person would weigh about 0.23 Ibf more.
For balloons and blimps the buoyant force of air, instead of being negligible, is the
controlling factor in the design. Also, many flow phenomena, e.g., natural convection
of heat and vertical mixing in the ocean, are strongly dependent upon seemingly small
buoyant forces.

Floating bodies are a special case; only a portion of the body is submerged, with
the remainder poking up out of the free surface. This is illustrated in Fig. 2.17, where
the shaded portion is the displaced volume. Equation (2.49) is modified to apply to this
smaller volume

Fg = (7y)(displaced volume) = floating-body weight (2.51)
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Fig. 2.17 Static equilibrium of a
floating body.

60 1bf

W =100 Ibf
E2.9

Stability

Neglect the displaced air up here.

(Displaced volume) x (v of fluid) = body weight

Not only does the buoyant force equal the body weight, but also they are collinear
since there can be no net moments for static equilibrium. Equation (2.51) is the math-
ematical equivalent of Archimedes’ law 2, previously stated.

EXAMPLE 2.9

A block of concrete weighs 100 Ibf in air and “weighs’ only 60 1bf when immersed in fresh wa-
ter (62.4 1bf/ft’). What is the average specific weight of the block?

Solution

A free-body diagram of the submerged block (see Fig. E2.9) shows a balance between the ap-
parent weight, the buoyant force, and the actual weight

S F.=0=60+ Fgz— 100
or Fp = 40 Ibf = (62.4 Ibf/ft*)(block volume, ft>)

Solving gives the volume of the block as 40/62.4 = 0.641 ft’. Therefore the specific weight of
the block is

100 Ibf

_ _ 3
Yolock = 0.641 ft3 156 Ibf/ft Ans.

Occasionally, a body will have exactly the right weight and volume for its ratio to
equal the specific weight of the fluid. If so, the body will be neutrally buoyant and will
remain at rest at any point where it is immersed in the fluid. Small neutrally buoyant
particles are sometimes used in flow visualization, and a neutrally buoyant body called
a Swallow float [2] is used to track oceanographic currents. A submarine can achieve
positive, neutral, or negative buoyancy by pumping water in or out of its ballast tanks.

A floating body as in Fig. 2.17 may not approve of the position in which it is floating.
If so, it will overturn at the first opportunity and is said to be statically unstable, like
a pencil balanced upon its point. The least disturbance will cause it to seek another
equilibrium position which is stable. Engineers must design to avoid floating instabil-



Fig. 2.18 Calculation of the meta-
center M of the floating body
shown in (a). Tilt the body a small
angle A6. Either (b) B' moves far
out (point M above G denotes sta-
bility); or (¢) B’ moves slightly
(point M below G denotes instabil-
ity).

Stability Related to Waterline
Area
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ity. The only way to tell for sure whether a floating position is stable is to “disturb”
the body a slight amount mathematically and see whether it develops a restoring mo-
ment which will return it to its original position. If so, it is stable; if not, unstable. Such
calculations for arbitrary floating bodies have been honed to a fine art by naval archi-
tects [3], but we can at least outline the basic principle of the static-stability calcula-
tion. Figure 2.18 illustrates the computation for the usual case of a symmetric floating
body. The steps are as follows:

1. The basic floating position is calculated from Eq. (2.51). The body’s center of
mass G and center of buoyancy B are computed.

2. The body is tilted a small angle A6, and a new waterline is established for the
body to float at this angle. The new position B' of the center of buoyancy is cal-
culated. A vertical line drawn upward from B’ intersects the line of symmetry at
a point M, called the metacenter, which is independent of A6 for small angles.

3. If point M is above G, that is, if the metacentric height MG is positive, a restor-
ing moment is present and the original position is stable. If M is below G (nega-
tive MG, the body is unstable and will overturn if disturbed. Stability increases
with increasing MG.

Thus the metacentric height is a property of the cross section for the given weight, and
its value gives an indication of the stability of the body. For a body of varying cross
section and draft, such as a ship, the computation of the metacenter can be very in-
volved.

Naval architects [3] have developed the general stability concepts from Fig. 2.18 into
a simple computation involving the area moment of inertia of the waterline area about
the axis of tilt. The derivation assumes that the body has a smooth shape variation (no
discontinuities) near the waterline and is derived from Fig. 2.19.

The y-axis of the body is assumed to be a line of symmetry. Tilting the body a small
angle 0 then submerges small wedge Obd and uncovers an equal wedge cOa, as shown.
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Fig. 2.19 A floating body tilted
through a small angle 6. The move-
ment x of the center of buoyancy B
is related to the waterline area mo-
ment of inertia.

Variable-width
L(x) into paper
dA = x tan 0 dx

Original
waterline
area

v

Tilted floating body

The new position B’ of the center of buoyancy is calculated as the centroid of the sub-
merged portion aObde of the body:

EDubOdL,:fxm)%—jde—jxdl)=0+ x(LdA)—fx(LdA)

cOdea Obd cOa Obd cOa

=0+ |x L (xtan 0dx) — f xL (—x tan 6 dx) = tan 0 f x* dAyaertine = Io tan 6

Obd cOa waterline

where [, is the area moment of inertia of the waterline footprint of the body about its
tilt axis O. The first integral vanishes because of the symmetry of the original sub-
merged portion cOdea. The remaining two “wedge” integrals combine into I, when
we notice that L dx equals an element of waterline area. Thus we determine the de-
sired distance from M to B:

Y _MB=—10  _%G+GB or MG=-lo -

Usubmcrgcd Vsub

GB (2.52)

The engineer would determine the distance from G to B from the basic shape and
design of the floating body and then make the calculation of /, and the submerged
volume y,p. If the metacentric height MG is positive, the body is stable for small
disturbances. Note that if GB is negative, that is, B is above G, the body is always
stable.

EXAMPLE 2.10

A barge has a uniform rectangular cross section of width 2L and vertical draft of height H, as
in Fig. E2.10. Determine (a) the metacentric height for a small tilt angle and () the range of
ratio L/H for which the barge is statically stable if G is exactly at the waterline as shown.
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Solution

If the barge has length b into the paper, the waterline area, relative to tilt axis O, has a base b
and a height 2L; therefore, I, = b(2L)*/12. Meanwhile, v, = 2LbH. Equation (2.52) predicts

— Iy == _8L712 H_ L* H
MG = Oun GB = SLbH > T30 2 Ans. (a)
The barge can thus be stable only if
L*>3H*2  or  2L>245H Ans. (b)

The wider the barge relative to its draft, the more stable it is. Lowering G would help also.

Even an expert will have difficulty determining the floating stability of a buoyant
body of irregular shape. Such bodies may have two or more stable positions. For ex-
ample, a ship may float the way we like it, so that we can sit upon the deck, or it may
float upside down (capsized). An interesting mathematical approach to floating stabil-
ity is given in Ref. 11. The author of this reference points out that even simple shapes,
e.g., a cube of uniform density, may have a great many stable floating orientations, not
necessarily symmetric. Homogeneous circular cylinders can float with the axis of sym-
metry tilted from the vertical.

Floating instability occurs in nature. Living fish generally swim with their plane
of symmetry vertical. After death, this position is unstable and they float with their
flat sides up. Giant icebergs may overturn after becoming unstable when their shapes
change due to underwater melting. Iceberg overturning is a dramatic, rarely seen
event.

Figure 2.20 shows a typical North Atlantic iceberg formed by calving from a Green-
land glacier which protruded into the ocean. The exposed surface is rough, indicating
that it has undergone further calving. Icebergs are frozen fresh, bubbly, glacial water
of average density 900 kg/m’. Thus, when an iceberg is floating in seawater, whose
average density is 1025 kg/m’, approximately 900/1025, or seven-eighths, of its vol-
ume lies below the water.

In rigid-body motion, all particles are in combined translation and rotation, and there
is no relative motion between particles. With no relative motion, there are no strains
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Fig. 2.20 A North Atlantic iceberg
formed by calving from a Green-
land glacier. These, and their even
larger Antarctic sisters, are the
largest floating bodies in the world.
Note the evidence of further calv-
ing fractures on the front surface.
(Courtesy of Sgren Thalund, Green-
land tourism a/s liulissat, Green-
land.)

or strain rates, so that the viscous term MVZV in Eq. (2.13) vanishes, leaving a balance
between pressure, gravity, and particle acceleration

Vp = p(g — a) (2.53)

The pressure gradient acts in the direction g — a, and lines of constant pressure (in-
cluding the free surface, if any) are perpendicular to this direction. The general case
of combined translation and rotation of a rigid body is discussed in Chap. 3, Fig. 3.12.
If the center of rotation is at point O and the translational velocity is V, at this point,
the velocity of an arbitrary point P on the body is given by”

V=Vo+Qxr,

where € is the angular-velocity vector and ry is the position of point P. Differentiat-
ing, we obtain the most general form of the acceleration of a rigid body:

AL aQ
a= i +Qx(ﬂxr0)+dtxr0 (2.54)

Looking at the right-hand side, we see that the first term is the translational accel-
eration; the second term is the centripetal acceleration, whose direction is from point

2 For a more detailed derivation of rigid-body motion, see Ref. 4, Sec. 2.7.
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Fig. 2.21 Tilting of constant-
pressure surfaces in a tank of
liquid in rigid-body acceleration.
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P perpendicular toward the axis of rotation; and the third term is the linear accelera-
tion due to changes in the angular velocity. It is rare for all three of these terms to ap-
ply to any one fluid flow. In fact, fluids can rarely move in rigid-body motion unless
restrained by confining walls for a long time. For example, suppose a tank of water
is in a car which starts a constant acceleration. The water in the tank would begin to
slosh about, and that sloshing would damp out very slowly until finally the particles
of water would be in approximately rigid-body acceleration. This would take so long
that the car would have reached hypersonic speeds. Nevertheless, we can at least dis-
cuss the pressure distribution in a tank of rigidly accelerating water. The following is
an example where the water in the tank will reach uniform acceleration rapidly.

EXAMPLE 2.11

A tank of water 1 m deep is in free fall under gravity with negligible drag. Compute the pres-
sure at the bottom of the tank if p, = 101 kPa.

Solution

Being unsupported in this condition, the water particles tend to fall downward as a rigid hunk
of fluid. In free fall with no drag, the downward acceleration is a = g. Thus Eq. (2.53) for this
situation gives Vp = p(g — g) = 0. The pressure in the water is thus constant everywhere and
equal to the atmospheric pressure 101 kPa. In other words, the walls are doing no service in sus-
taining the pressure distribution which would normally exist.

In this general case of uniform rigid-body acceleration, Eq. (2.53) applies, a having
the same magnitude and direction for all particles. With reference to Fig. 2.21, the par-
allelogram sum of g and —a gives the direction of the pressure gradient or greatest rate
of increase of p. The surfaces of constant pressure must be perpendicular to this and
are thus tilted at a downward angle 6 such that

_ —1 ay
0 = tan T+ a (2.55)

Z

Fluid
at rest
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Part (a)

E2.12

Part (b)

One of these tilted lines is the free surface, which is found by the requirement that the
fluid retain its volume unless it spills out. The rate of increase of pressure in the di-
rection g — a is greater than in ordinary hydrostatics and is given by

dp _

4 = PG where G = a2+ (g + a)*]"? (2.56)

These results are independent of the size or shape of the container as long as the
fluid is continuously connected throughout the container.

EXAMPLE 2.12

A drag racer rests her coffee mug on a horizontal tray while she accelerates at 7 m/s>. The mug
is 10 cm deep and 6 cm in diameter and contains coffee 7 cm deep at rest. (@) Assuming rigid-
body acceleration of the coffee, determine whether it will spill out of the mug. (b) Calculate the
gage pressure in the corner at point A if the density of coffee is 1010 kg/m>.

Solution

The free surface tilts at the angle 6 given by Eq. (2.55) regardless of the shape of the mug. With
a, = 0 and standard gravity,

9.81

If the mug is symmetric about its central axis, the volume of coffee is conserved if the tilted sur-
face intersects the original rest surface exactly at the centerline, as shown in Fig. E2.12.

=

6 =tan ! % = tan ! 70 = 35.5°

> ax=7m/sz

A
I )

Thus the deflection at the left side of the mug is
z = (3 cm)(tan 0) = 2.14 cm Ans. (a)
This is less than the 3-cm clearance available, so the coffee will not spill unless it was sloshed
during the start-up of acceleration.
When at rest, the gage pressure at point A is given by Eq. (2.20):
Pa = pgZeurr — 24) = (1010 kg/m*)(9.81 m/s*)(0.07 m) = 694 N/m* = 694 Pa
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Fig. 2.22 Development of parabo-
loid constant-pressure surfaces in a
fluid in rigid-body rotation. The
dashed line along the direction of
maximum pressure increase is an
exponential curve.
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During acceleration, Eq. (2.56) applies, with G = [(7.0)2 + (9.81)%]"% = 12.05 m/s>. The dis-
tance As down the normal from the tilted surface to point A is

As = (7.0 + 2.14)(cos 6) = 7.44 cm
Thus the pressure at point A becomes
pa = pG As = 1010(12.05)(0.0744) = 906 Pa Ans. (b)

which is an increase of 31 percent over the pressure when at rest.

As a second special case, consider rotation of the fluid about the z axis without any
translation, as sketched in Fig. 2.22. We assume that the container has been rotating
long enough at constant €} for the fluid to have attained rigid-body rotation. The fluid
acceleration will then be the centripetal term in Eq. (2.54). In the coordinates of Fig.
2.22, the angular-velocity and position vectors are given by

O =Kk ro = i,r (2.57)
Then the acceleration is given by
Q X (Q X ry) = —rQ%, (2.58)
as marked in the figure, and Eq. (2.53) for the force balance becomes
_. 9 P _ oy — 2
Vp =i, i +k p p(g —a) = p(—gk + rQ4,) (2.59)

Equating like components, we find the pressure field by solving two first-order partial
differential equations

P_ o2 9 _
o prQ) P 0 (2.60)

This is our first specific example of the generalized three-dimensional problem de-
scribed by Eqgs. (2.14) for more than one independent variable. The right-hand sides of

2k

__ Still-water
level
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Fig. 2.23 Determining the free-
surface position for rotation of a
cylinder of fluid about its central
axis.

(2.60) are known functions of r and z. One can proceed as follows: Integrate the first
equation “partially,” i.e., holding z constant, with respect to r. The result is

p =3pr’Q* + f(z) (2.61)

where the “constant” of integration is actually a function f(z).” Now differentiate this
with respect to z and compare with the second relation of (2.60):

P—0+r@=—y
or fly=—-yz+C (2.62a)
where C is a constant. Thus Eq. (2.61) now becomes
p = const — yz + 5pr°Q)? (2.62b)

This is the pressure distribution in the fluid. The value of C is found by specifying the
pressure at one point. If p = p, at (r, z) = (0, 0), then C = p,. The final desired dis-
tribution is

p=po— 7. +2pr’Q’ (2.63)

The pressure is linear in z and parabolic in r. If we wish to plot a constant-pressure
surface, say, p = p;, Eq. (2.63) becomes
202
P e LA (2.64)
Y 2g
Thus the surfaces are paraboloids of revolution, concave upward, with their minimum
point on the axis of rotation. Some examples are sketched in Fig. 2.22.

As in the previous example of linear acceleration, the position of the free surface is
found by conserving the volume of fluid. For a noncircular container with the axis of
rotation off-center, as in Fig. 2.22, a lot of laborious mensuration is required, and a
single problem will take you all weekend. However, the calculation is easy for a cylin-
der rotating about its central axis, as in Fig. 2.23. Since the volume of a paraboloid is

s 1
Stll- Volume = 2~ R% 2
water — — —]— - ? n= SR
level h 2
2 | L
<|>e
R I R

"This is because f(z) vanishes when differentiated with respect to r. If you don’t see this, you should
review your calculus.
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one-half the base area times its height, the still-water level is exactly halfway between
the high and low points of the free surface. The center of the fluid drops an amount
h/2 = O°R%/(4g), and the edges rise an equal amount.

EXAMPLE 2.13

The coffee cup in Example 2.12 is removed from the drag racer, placed on a turntable, and ro-
tated about its central axis until a rigid-body mode occurs. Find (a) the angular velocity which
will cause the coffee to just reach the lip of the cup and () the gage pressure at point A for this
condition.

Solution

The cup contains 7 cm of coffee. The remaining distance of 3 cm up to the lip must equal the
distance //2 in Fig. 2.23. Thus

2p2 2 2
ﬁ=0.03m=QR _ Q(0.03mg
2 4g 4(9.81 m/s”)
Solving, we obtain
0% = 1308 or Q) = 36.2 rad/s = 345 r/min Ans. (a)

To compute the pressure, it is convenient to put the origin of coordinates r and z at the bottom
of the free-surface depression, as shown in Fig. E2.13. The gage pressure here is pg = 0, and
point A is at (r, z) = (3 cm, —4 cm). Equation (2.63) can then be evaluated

pa =0 — (1010 kg/m*)(9.81 m/s*)(—0.04 m)
+ 5(1010 kg/m*)(0.03 m)*(1308 rad?/s?)
= 396 N/m? + 594 N/m”> = 990 Pa Ans. (b)

This is about 43 percent greater than the still-water pressure p, = 694 Pa.

Here, as in the linear-acceleration case, it should be emphasized that the paraboloid
pressure distribution (2.63) sets up in any fluid under rigid-body rotation, regardless
of the shape or size of the container. The container may even be closed and filled with
fluid. It is only necessary that the fluid be continuously interconnected throughout the
container. The following example will illustrate a peculiar case in which one can vi-
sualize an imaginary free surface extending outside the walls of the container.

EXAMPLE 2.14

A U-tube with a radius of 10 in and containing mercury to a height of 30 in is rotated about its
center at 180 r/min until a rigid-body mode is achieved. The diameter of the tubing is negligi-
ble. Atmospheric pressure is 2116 Ibf/ft>. Find the pressure at point A in the rotating condition.
See Fig. E2.14.
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Solution

Convert the angular velocity to radians per second:

24 rad/r

O= (180 r/min) m

= 18.85 rad/s

From Table 2.1 we find for mercury that y = 846 Ibf/ft> and hence p = 846/32.2 = 26.3 slugs/ft>.
At this high rotation rate, the free surface will slant upward at a fierce angle [about 84°; check
this from Eq. (2.64)], but the tubing is so thin that the free surface will remain at approximately
the same 30-in height, point B. Placing our origin of coordinates at this height, we can calcu-
late the constant C in Eq. (2.62b) from the condition pp = 2116 Ibf/ft? at (r, z) = (10 in, O):

pe = 2116 Ibf/ft> = C — 0 + 5(26.3 slugs/f*)(13 ft)*(18.85 rad/s)*

or C = 2116 — 3245 = —1129 Ibf/ft?

We then obtain p, by evaluating Eq. (2.63) at (r, z) = (0, —30 in):

pa = —1129 — (846 Ibf/f’)(—35 ft) = — 1129 + 2115 = 986 Ibf/ft* Ans.

This is less than atmospheric pressure, and we can see why if we follow the free-surface pa-
raboloid down from point B along the dashed line in the figure. It will cross the horizontal por-
tion of the U-tube (where p will be atmospheric) and fall below point A. From Fig. 2.23 the ac-
tual drop from point B will be

QR> _ (1885°(1)°

h="7 2(322)

=3.83 ft =46 in
Thus p, is about 16 inHg below atmospheric pressure, or about {5(846) = 1128 Ibf/ft> below
P = 2116 1bf/ft%, which checks with the answer above. When the tube is at rest,

pa = 2116 — 846(—13) = 4231 Ibf/ft?

Hence rotation has reduced the pressure at point A by 77 percent. Further rotation can reduce
pa to near-zero pressure, and cavitation can occur.

An interesting by-product of this analysis for rigid-body rotation is that the lines
everywhere parallel to the pressure gradient form a family of curved surfaces, as
sketched in Fig. 2.22. They are everywhere orthogonal to the constant-pressure sur-
faces, and hence their slope is the negative inverse of the slope computed from Eq.
(2.64):

dz 1 1

ar | oo (dddr)y—coms Qg

where GL stands for gradient line

dz _ g

or ar =

(2.65)
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Separating the variables and integrating, we find the equation of the pressure-gradient
surfaces

2
r=C, exp(—%) (2.66)

Notice that this result and Eq. (2.64) are independent of the density of the fluid. In the
absence of friction and Coriolis effects, Eq. (2.66) defines the lines along which the ap-
parent net gravitational field would act on a particle. Depending upon its density, a small
particle or bubble would tend to rise or fall in the fluid along these exponential lines,
as demonstrated experimentally in Ref. 5. Also, buoyant streamers would align them-
selves with these exponential lines, thus avoiding any stress other than pure tension. Fig-
ure 2.24 shows the configuration of such streamers before and during rotation.

Pressure is a derived property. It is the force per unit area as related to fluid molecu-
lar bombardment of a surface. Thus most pressure instruments only infer the pressure
by calibration with a primary device such as a deadweight piston tester. There are many
such instruments, both for a static fluid and a moving stream. The instrumentation texts
in Refs. 7 to 10, 12, and 13 list over 20 designs for pressure measurement instruments.
These instruments may be grouped into four categories:

1. Gravity-based: barometer, manometer, deadweight piston.

2. Elastic deformation: bourdon tube (metal and quartz), diaphragm, bellows,
strain-gage, optical beam displacement.

3. Gas behavior: gas compression (McLeod gage), thermal conductance (Pirani gage),
molecular impact (Knudsen gage), ionization, thermal conductivity, air piston.

4. Electric output: resistance (Bridgman wire gage), diffused strain gage, capacita-
tive, piezoelectric, magnetic inductance, magnetic reluctance, linear variable dif-
ferential transformer (LVDT), resonant frequency.

The gas-behavior gages are mostly special-purpose instruments used for certain scien-
tific experiments. The deadweight tester is the instrument used most often for calibra-
tions; for example, it is used by the U.S. National Institute for Standards and Tech-
nology (NIST). The barometer is described in Fig. 2.6.

The manometer, analyzed in Sec. 2.4, is a simple and inexpensive hydrostatic-
principle device with no moving parts except the liquid column itself. Manometer mea-
surements must not disturb the flow. The best way to do this is to take the measure-
ment through a static hole in the wall of the flow, as illustrated for the two instruments
in Fig. 2.25. The hole should be normal to the wall, and burrs should be avoided. If
the hole is small enough (typically 1-mm diameter), there will be no flow into the mea-
suring tube once the pressure has adjusted to a steady value. Thus the flow is almost
undisturbed. An oscillating flow pressure, however, can cause a large error due to pos-
sible dynamic response of the tubing. Other devices of smaller dimensions are used for
dynamic-pressure measurements. Note that the manometers in Fig. 2.25 are arranged
to measure the absolute pressures p; and p,. If the pressure difference p; — p, is de-
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Fig. 2.24 Experimental demonstra-
tion with buoyant streamers of the
fluid force field in rigid-body rota-
tion: (fop) fluid at rest (streamers
hang vertically upward); (bottom)
rigid-body rotation (streamers are
aligned with the direction of maxi-
mum pressure gradient). (From Ref.
5, courtesy of R. lan Fletcher.)
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Fig. 2.25 Two types of accurate
manometers for precise measure- L
ments: (a) tilted tube with eye- N /)
piece; (b) micrometer pointer with

ammeter detector. (a) (b)

sired, a significant error is incurred by subtracting two independent measurements, and
it would be far better to connect both ends of one instrument to the two static holes p;
and p, so that one manometer reads the difference directly. In category 2, elastic-
deformation instruments, a popular, inexpensive, and reliable device is the bourdon
tube, sketched in Fig. 2.26. When pressurized internally, a curved tube with flattened
cross section will deflect outward. The deflection can be measured by a linkage at-
tached to a calibrated dial pointer, as shown. Or the deflection can be used to drive
electric-output sensors, such as a variable transformer. Similarly, a membrane or dia-
phragm will deflect under pressure and can either be sensed directly or used to drive
another sensor.

O

Section AA

Bourdon
tube

Pointer for

\
. \ \ Flattened tube deflects
dial gage

v outward under pressure

Linkage

Fig. 2.26 Schematic of a bourdon-
tube device for mechanical mea- T
surement of high pressures. High pressure
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Fig. 2.27 The fused-quartz, force-
balanced bourdon tube is the most
accurate pressure sensor used in
commercial applications today.
(Courtesy of Ruska Instrument
Corporation, Houston, TX.)

Summary

An interesting variation of Fig. 2.26 is the fused-quartz, forced-balanced bourdon
tube, shown in Fig. 2.27, whose deflection is sensed optically and returned to a zero
reference state by a magnetic element whose output is proportional to the fluid pres-
sure. The fused-quartz, forced-balanced bourdon tube is reported to be one of the most
accurate pressure sensors ever devised, with uncertainty of the order of =0.003 per-
cent.

The last category, electric-output sensors, is extremely important in engineering
because the data can be stored on computers and freely manipulated, plotted, and an-
alyzed. Three examples are shown in Fig. 2.28, the first being the capacitive sensor
in Fig. 2.28a. The differential pressure deflects the silicon diaphragm and changes
the capacitancce of the liquid in the cavity. Note that the cavity has spherical end
caps to prevent overpressure damage. In the second type, Fig. 2.28b, strain gages and
other sensors are diffused or etched onto a chip which is stressed by the applied pres-
sure. Finally, in Fig. 2.28¢, a micromachined silicon sensor is arranged to deform
under pressure such that its natural vibration frequency is proportional to the pres-
sure. An oscillator excites the element’s resonant frequency and converts it into ap-
propriate pressure units. For further information on pressure sensors, see Refs. 7 to
10, 12, and 13.

This chapter has been devoted entirely to the computation of pressure distributions and
the resulting forces and moments in a static fluid or a fluid with a known velocity field.
All hydrostatic (Secs. 2.3 to 2.8) and rigid-body (Sec. 2.9) problems are solved in this
manner and are classic cases which every student should understand. In arbitrary vis-
cous flows, both pressure and velocity are unknowns and are solved together as a sys-
tem of equations in the chapters which follow.
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Fig. 2.28 Pressure sensors with
electric output: (a) a silicon dia-
phragm whose deflection changes
the cavity capacitance (Courtesy of
Johnson-Yokogawa Inc.); (b) a sili-
con strain gage which is stressed
by applied pressure; (¢) a microma-
chined silicon element which res-
onates at a frequency proportional
to applied pressure. [(b) and (c)
are courtesy of Druck, Inc., Fair-
field, CT]
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