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In this problem we assumed that the velocity is uniform
across the section. In fact, the velocity in the bend approxi-
mates a free vortex (irrotational) profile in which
V o 1/r (where r is the radius) instead of V = const. Hence,
this flow-measurement device could only be used to obtain
approximate values of the flow rate.

~ 6-3 BERNOULLI EQUATION —INTEGRATION OF EULER’S EQUATION ALONG
A STREAMLINE FOR STEADY FLOW

Compared to the viscous-flow equivalents, the momentum or Euler’s equation for
incompressible, inviscid flow (Eqs. 6.1) is simpler mathematically, but solution (in
conjunction with the mass conservation equation, Eq. 5.1c) still presents formidable
difficulties in all but the most basic flow problems. One convenient approach for a
steady flow is to integrate Euler’s equation along a streamline. We will do this below
using two different mathematical approaches, and each will result in the Bernoulli
equation. Recall that in Section 4-4 we derived the Bernoulli equation by starting
with a differential control volume; these two additional derivations will give us more
insight into the restrictions inherent in use of the Bernoulli equation.

Derivation Using Streamline Goordinates

Euler’s equation for steady flow along a streamline (from Eq. 6.4a) is

— 6.6
p ds 8 os ds (66)
If a fluid particle moves a distance, ds, along a streamline, then
?)_p ds =dp (the change in pressure along s)
s
dz . .
N ds =dz (the change in elevation along s)
$
oV .
o ds=dV (the change in speed along s)
s
Thus, after multiplying Eq. 6.6 by ds, we can write
d
——p—gdz =VdV or d_p+ VdV +gdz=0 (alongs)
P p
Integration of this equation gives
v2
Jd—p + 5 + gz = constant (along s) 6.7
p

Before Eq. 6.7 can be applied, we must specify the relation between pressure and
density. For the special case of incompressible flow, p = constant, and Eq. 6.7
becomes the Bernoulli equation,




238 CHAPTER 6 / INCOMPRESSIBLE INVISCID FLOW

2
LA £z = constant (6.8)
p 2 ‘
Restrictions: (1) Steady flow.

(2) Incompressible flow.
(3) Frictionless flow.

(4) Flow along a streamline.

The Bernoulli equation is a powerful and useful equation because it relates pres-
sure changes to velocity and elevation changes along a streamline. However, it gives
correct results only when applied to a flow situation where all four of the restrictions
are reasonable. Keep the restrictions firmly in mind whenever you consider using the
Bernoulli equation. (In general, the Bernoulli constant in Eq. 6.8 has different values
along different streamlines.?)

*Derivation Using Rectangular Coordinates

The vector form of Euler’s equation, Eq. 6.1, also can be integrated along a stream-
line. We shall restrict the derivation to steady flow; thus, the end result of our effort
should be Eq. 6.7.
For steady flow, Euler’s equation in rectangular coordinates can be expressed as
DV av aVv v - -~ 1 -
oy =Y o +v PN +w 3 V- p Vp — gk (6.9
For steady flow the velocity field is given by V = V(x, y, z). The streamlines are
lines drawn in the flow field tangent to the velocity vector at every point. Recall again
that for steady flow, streamlines, pathlines, and streaklines coincide. The motion of a
particle along a streamline is governed by Eq. 6.9. During time interval dt the particle
has vector displacement dsalong the streamline.
If we take the dot product of the terms in Eq. 6.9 with displacement ds along the
streamline, we obtain a scalar equation relating pressure, speed, and elevation along
the streamline. Taking the dot product of 45 with Eq. 6.9 gives

~ —- | - ~L
(V-VVW-ds =——Vp-ds — gk - ds (6.10)
p
where A A
ds =dxi +dyj +dzk (alongs)
Now we evaluate each of the three terms in Eq. 6.10, starting on the right,
dp

Ly g5 = —l[{a—pﬂ“'—+/2%B][dx£+dyj+dzlé]
P z

p| ox oy

1l

I|ap op op
——|=—dx+—dy+—d
p[ax x+ay y+ 3z z} (along )

_lvp.dg = —ldp (along )
p p

¥ For the case of irrotational flow, the constant has a single value throughout the entire flow field (Section 6-7).
*This section may be omitted without loss of continuity in the text material.
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and

—glz-dE = —glz-[dxz? + dyf +dzk]
=—-gdz (along s)

Using a vector identity,* we can write the third term as
(V-V)V - di = [LV(V- V)= Vx (V x V)] - ds
= {%V(V-V)}.dE—{Vx(VxV>}-d§

The last term on the right side of this equation is zero, since V is parallel to d5. Con-
sequently,

(V-V)V-d5s =LV(V-V)-d5 = L V(V?)-d5 (along )

_l lcaV2+~.aV2+]28V2
2| ox Jay dz

]-[dxf+dyj+dz12]

|

2| ax oy dz
V-V d5 = %d(V2) (along s)

Substituting these three terms into Eq. 6.10 yields

%p + %d(Vz) +gdz =0 (alongys)

Integrating this equation, we obtain

2
Id—p + V_ + gz = constant  (along s)
p 2
If the density is constant, we obtain the Bernoulli equation
2
p

—+ — + gz = constant
p 2

As expected, we see that the last two equations are identical to Eqgs. 6.7 and 6.8 de-
rived previously using streamline coordinates. The Bernoulli equation, derived using
rectangular coordinates, is still subject to the restrictions: (1) steady flow, (2) incom-
pressible flow, (3) frictionless flow, and (4) flow along a streamline.

Static, Stagnation, and Dynamic Pressures

The pressure, p, which we have used in deriving the Bernoulli equation, Eq. 6.8, is the
thermodynamic pressure; it is commonly called the static pressure. The static pressure is
the pressure seen by the fluid particle as it moves (so it is something of a misnomer!)—

*The vector identity
V-V =2V -V)-Vx(VxV)

may be verified by expanding each side into components.
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we also have the stagnation and dynamic pressures, which we will define shortly.
How do we measure the pressure in a fluid in motion?
In Section 6-2 we showed that there is no pressure variation normal to strai
streamlines. This fact makes it possible to measure the static pressure in a flowing
fluid using a wall pressure “tap,” placed in a region where the flow streamnlines are
straight, as shown in Fig. 6.2a. The pressure tap is a small hole, drilled carefully in
the wall, with its axis perpendicular to the surface. If the hole is perpendicular to the
duct wall and free from burrs, accurate measurements of static pressure can be made
by connecting the tap to a suitable pressure-measuring instrument [1].
In a fluid stream far from a wall, or where streamlines are curved, accurate static
pressure measurements can be made by careful use of a static pressure probe, shown
in Fig. 6.2b. Such probes must be designed so that the measuring holes are placed
correctly with respect to the probe tip and stem to avoid erroneous results [2]. In use,
the measuring section must be aligned with the local flow direction.
Static pressure probes, such as that shown in Fig 6.2b, and in a variety of othe
forms, are available commercially in sizes as small as 1.5 mm (,—'6 in.) in diameter [3
The stagnation pressure is obtained when a flowing fluid is decelerated to ze
speed by a frictionless process. For incompressible flow, the Bernoulli equation cag
be used to relate changes in speed and pressure along a streamline for such a process.
Neglecting elevation differences, Eq. 6.8 becomes !
p V

p

+ = constant

If the static pressure is p at a point in the flow where the speed is V, then the stagna:

tion pressure, p,, where the stagnation speed, V,, is zero, may be computed from
=0

P Vhopr ¥
p/2zp2

1
Po =p+EpV2 (6.11)

or

Equation 6.11 is a mathematical statement of the definition of stagnation pressure,
valid for incompressible flow. The term %pV2 generally is called the dynamic pressure
Equation 6.11 states that the stagnation (or total) pressure equals the static pressure
plus the dynamic pressure. One way to picture the three pressures is to imagine you
are standing in a steady wind holding up your hand: The static pressure will be a
mospheric pressure; the larger pressure you feel at the center of your hand will be the
stagnation pressure; and the buildup of pressure will be the dynamic press

I s S S S S L SR Small holes
> Flow
Flow —_— —_—

streamlings —————————>

—————-
— Stem
Pressure l

tap
To manometer or

pressure gage
(a) Wall pressure tap (b) Static pressure probe

Fig. 6.2 Measurement of static pressure.
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Flow
> /

Small hole

,_
§
3

To manometer or

pressure gage BIBLIOTECA

u.p. B, \&v
'y -'#‘o

’2( -p)
V= ﬂp_p 6.12)

Thus, if the stagnation pressure and the static pressure could be measured at a point,
Eq. 6.12 would give the local flow speed.

Stagnation pressure is measured in the laboratory using a probe with a hole that
faces directly upstream as shown in Fig. 6.3. Such a probe is called a stagnation pres-
sure probe, or pitot (pronounced pea-toe) tube. Again, the measuring section must be
aligned with the local flow direction.

We have seen that static pressure at a point can be measured with a static pres-
sure tap or probe (Fig. 6.2). If we knew the stagnation pressure at the same point,
then the flow speed could be computed from Eq. 6.12. Two possible experimental
setups are shown in Fig. 6.4.

In Fig. 6.4a, the static pressure corresponding to point A is read from the wall
static pressure tap. The stagnation pressure is measured directly at A by the total head
tube, as shown. (The stem of the total head tube is placed downstream from the
measurement location to minimize disturbance of the local flow.)

Two probes often are combined, as in the pitot-static tube shown in Fig. 6.4b.
The inner tube is used to measure the stagnation pressure at point B, while the static
pressure at C is sensed using the small holes in the outer tube. In flow fields where
the static pressure variation in the streamwise direction is small, the pitot-static tube
may be used to infer the speed at point B in the flow by assuming pz = p. and using
Eq. 6.12. (Note that when pg # pc, this procedure will give erroneous results.)

Remember that the Bernoulli equation applies only for incompressible flow
(Mach number M = 0.3). The definition and calculation of the stagnation pressure
for compressible flow will be discussed in Section 11-3.

Fig. 6.3 Measurement of stagnation pressure.

Solving Eq. 6.11 for the speed,

Static
_ pressure
| Total Flow / holes
Flow A head ——— e
tube o
: c
PRSI
p Po P
Po
(a) Total head tube used (b) Pitot-static tube

with wall static tap
Fig.6.4 Simultaneous measurement of stagnation and static pressures.

MPLE 6.2 Pitot Tube

A pitot tube 18 inserted in an air flow (at STP) to measure the flow speed. The tube is
inserted so that it points upstream into the flow and the pressure sensed by the tube is
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the stagnation pressure. The static pressure is measured at the same location in the
flow, using a wall pressure tap. If the pressure difference is 30 mm of mercury, deter:
mine the flow speed.

EXAMPLE PROBLEM 6.2

GIVEN: A pitot tube inserted in a flow as shown. The flowing fluid is air and the manometer liquid is "
" mercury.

FIND: The flow speed.

SOLUTION:

RS R |
v? :
Governing equation: LAV 8z = constant
p 2 Air flow
R —
Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Flow along a streamline.
(4) Frictionless deceleration along stagnation streamline. 36 mm
Writing Bernoulli’s equation along the stagnation streamline (with Az = 0) F
yields M
ercury
2
p_p YV
p p 2

Po is the stagnation pressure at the tube opening where the speed has been reduced, without friction, to

zero. Solving for V gives
V= f2(po - p)
Pair

Po — P = Prg8h = py,0 8 h(SGyy)

From the diagram,

and

V= sz Ogh(SGHg)

Pair
2 1000 kg 98lm 30mm 136 m° m
= X —X — X X X X
m> s2 1.23kg ~ 1000 mm
V =808m/s, 14

At T = 20°C, the speed of sound in air is 343 m/s. Hence, M = 0.236 and the assumption of incompress-v
ible flow is valid.

This problem illustrates use of a pitot tube to determine flow
speed. Pitot (or pitot-static) tubes are often placed on the exte-

rior of aircraft to indicate air speed relative to the aircraft, and
hence aircraft speed relative to the air.
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Applications

The Bernoulli equation can be applied between any two points on a streamline pro-
vided that the other three restrictions are satisfied. The result is -

2 2
LINPLA SR R Jpe 6.13)
2 p 2
where subscripts | and 2 represent any two points on a streamline. Applications of
Egs. 6.8 and 6.13 to typical flow problems are illustrated in Example Problems 6.3

through 6.5.

In some situations, the flow appears unsteady from one reference frame, but
steady from another, which translates with the flow. Since the Bernoulli equation was
derived by integrating Newton’s second law for a fluid particle, it can be applied in
any inertial reference frame (see the discussion of translating frames in Section 4-4).
The procedure is illustrated in Example Problem 6.6.

MPLE 6.3 Nozzle Flow

Air flows steadily at low speed through a horizontal nozzie (by definition a device for
accelerating a flow), discharging to atmosphere. The area at the nozzle inlet is 0.1 m?.
At the nozzle exit, the area is 0.02 m? Determine the gage pressure required at the
nozzle inlet to produce an outlet speed of 50 mvs.

AMPLE PROBLEM 6.3

EN:  Flow through a nozzle, as shown.

P1v ~ Pam-
10N:

ning equations: Streamline A, =0.02 m2
, , A, =0.1m? /
14 %2
Pyl g =24 24, | W
p 2

= (1)

% pdv+J pV-di =0
cv CS

umptions: (1) Steady flow.
: (2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.
(5) 2y = z.
(6) Uniform flow at sections (D and Q).

maximum speed of 50 m/s is well below 100 m/s, which corresponds to Mach number M = 0.3 in
lard air. Hence, the flow may be treated as incompressible.
- Apply the Bernoulli equation along a streamline between points (D and @ to evaluate Py Then

P1 = Pam =PI~ P2 = g(vg - Viz)
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Apply the continuity equation to determine V|,

(—pViAD+(pV,4,) =0 or VA, = V4,

so that

For air at standard conditions, p = 1.23 kg/m?. Then
Pt~ Pam = §(V§ - V%)

2 2

_1 123kg [0 m? (10’ m? |N-¢? :
2 m’ s s* |kg-m

P = Pam = 1.48kPa P TP

This problem illustrates a typical application of the
Bernoulli equation.

The streamlines must be straight at the inlet and exit in or-
der to have uniform pressures at those locations.

EXAMPLE 6.4 Flow through a Siphon

A U-tube acts as a water siphon. The bend in the tube is 1 m above the water surface;
tube outlet is 7 m below the water surface. The water issues from the bottom of the sip
as a free jet at atmospheric pressure. Determine (after listing the necessary assumpti
the speed of the free jet and the minimum absolute pressure of the water in the bend.

EXAMPLE PROBLEM 6.4

GIVEN: Water flowing through a siphon as shown.

FIND: (a) Speed of water leaving as a free jet.
(b) Pressure at point @) in the flow.

SOLUTION:

2
. . 4
Governing equation: ; + 2y + gz = constant

Assumptions: - (1) Neglect friction.
(2) Steady flow.
(3) Incompressible flow.
(4) Flow along a streamline.
(5) Reservoir is large compared with pipe. @+




6-3 BERNOULLI EQUATION—INTEGRATION OF EULER'S EQUATION ALONG A STREAMLINE FOR STEADY FLOW 245

Apply the Bernoulli equation between points @ and @

2 2

Wi V3

S — g ==+ =+ gz
2 87 P 2 8%

€ AT eqervoiy —>> AT€dpp., then V| = 0. Also p; = p; = pyy, S0

V2
8y = 72 +gz, and V3 =2g(z - 2)

9.81 7m
V, = ,/2g(zl -) = 2x s%x =11.7m/s e

0 determine the pressure at location @), we write the Bernoulli equation between D and B.

V2 2
.&_+_l+gzl:£i+V_A+ng
p 2 p 2

gain V, ~ 0 and from conservation of mass V, = V,. Hence

v 2
+821—7‘8ZA=%+8(21‘2A)—72

v
Pa=p+p8(z—24)—p—==

2
1.01x10° N 99 kg 98lm (-1m) N-s?
= —3+ ——3>< —2X P —
m m s kg -m

1 99 kg (11.77°m?> N-s?
-—X —3)( —2—X
2 m s kg -m

Pa = 22.8 kPa (abs) or —78.5 kPa (gage) Pa

Notes:

v/ This problem illustrates an application of the Bernoulli
equation that includes elevation changes.

v Always take care when neglecting friction in any internal
flow. In this problem, neglecting friction is reasonable if
the pipe is smooth-surfaced and is relatively short. In
Chapter 8 we will study frictional effects in internal flows.

K(AMPLE 6.5 Flow under a Sluice Gate

Water flows under a sluice gate on a horizontal bed at the inlet to a flume. Upstream
from the gate, the water depth is 1.5 ft and the speed is negligible. At the vena con-
tracta downstream from the gate, the flow streamlines are straight and the depth is
2 in. Determine the flow speed downstream from the gate and the discharge in cubic
feet per second per foot of width.
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EXAMPLE PROBLEM 6.5

GIVEN: Flow of water under a sluice gate.

FIND: (a) V.. ' 1
(b) Q in ft¥/s/ft of width. g Sluice gate

Vena contracta

SOLUTION: D,=2in
Under the assumptions listed below, the flow Ve [ 7°
satisfies all conditions necessary to apply the
Bernoulli equation. The question is, what
streamline do we use?

2
Governing equation: by Yi +gy =
p

Assumptions: (1) Steady flow.
(2) Incompressible flow.
(3) Frictionless flow.
(4) Flow along a streamline.
(5) Uniform flow at each section.
(6) Hydrostatic pressure distribution.

If we consider the streamline that runs along the bottom of the channel (z = 0), because of assumption 6
the pressures at @ and @ are

Py =Pun t pgDy and  py = pun + pgD;
so that the Bernoulli equation for this streamline is
(Pygy + P8D | Vi _ Py +P8Dy) . vi
p 2 p 2
or
2 2
14 1%
FREIr R “

On the other hand, consider the streamline that runs along the free surface on both sides of the gate. For
this streamline

2 2
—pm‘+h+gD,=—p“'m+ﬁ+gDz
2 P 2 |
or
2 2
Vi Vi
—LigD =2 4gD )
5 8Dy 5 e |

We have arrived at the same equation (Eq. 1) for the streamline at the bottom and the streamline at the free
surface, implying the Bernoulli constant is the same for both streamlines. We will see in Section 6-6 that
this flow is one of a family of flows for which this is the case. Solving for V, yields

V; = 28D — Dy) + V}
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But V} = 0, so

[ 322 ft (156t —2in._ ft
V, = 28D, - Dy) = | x s—z[ mx—)

12 in.
V.

Vy = 9.27ft/s 2

For uniform flow, Q = VA = VDw, or
9.27 2in.

€ _yp-vp, = R R sses

w s 12in.

0 Q

= = 1.55 ft*/s/foot of width w

w

EXAMPLE 6.6 Bernoulli Equation in Translating Reference Frame

A light plane flies at 150 km/hr in standard air at an altitude of 1000 m. Determine
the stagnation pressure at the leading edge of the wing. At a certain point close to the
wing, the air speed relative to the wing is 60 m/s. Compute the pressure at this point.

Var = 0
Vg = 60 m/s Observer
A B (relative to wing)
Y, = 150 ke <« (T g

ND:  Stagnation pressure, Po,» at point A and static pressure, pp, at point B.

LUTION:
w is unsteady when observed from a fixed frame, that is, by an observer on the ground. However, an ob-
rver on the wing sees the following steady flow:

Observer
b B Vy=60m/s
\ —
_ , A B
—_—
Vaie = V., = 150 kmv/hr

z = 1000 m in standard air, the temperature is 281 K and the speed of sound is 336 m/s. Hence at point
MB = Vg/c = 0.178. This is less than 0.3, so the flow may be treated as incompressible. Thus the
moulli equation can be applied along a streamline in the moving observer’s inertial reference frame.

2 2 2
'gequation; pﬂ+!ﬂi+g2m=p_ﬁ+v_‘4+gz/1=p_3+i+gz3
p 2 p 2 2
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Assumptions:

and

Values for pressure and density may be found from Table A.3. Thus, at 1000 m, p/ps, = 0.8870 and
p/psy = 0.9075. Consequently, ,

Since the speed is V, = 0 at the stagnation point,

Solving for the static pressure at B, we obtain

1
Pg = Pair +5P(Vazu - Vg)

896x10° N 1 112kg|(150km 1000 m  hr ) (60’ m?|N.s2
pB = —2-+—X —3 — X — X - 5
m 2 m hr km 3600 s s° |kg-m
pp = 88.6kPa (abs) Ps

(1) Steady flow.

(2) Incompressible flow (V < 100 mV/s).
(3) Frictionless flow.

(4) Flow along a streamline.

(5) Neglect Az.

0.8870 1.01x 10° N

p = 0.8870pg, = — = 8.96 x 10* N/m?
m
0.9075 1.23
p = 0.9075p5, = x X 1 12kg/m?
m

1 2
Po, = Pair T 5 PVair

2
_896x10° N1 112kg(150km 1000 m _br ) N5
m? 2 m> hr km 3600 s kg - m
po, = 90.6 kPa (abs)( Poy

Cautions on Use of the Bernoulli Equation

In Example Problems 6.3 through 6.6, we have seen several situations where the
Bernoulli equation may be applied because the restrictions on its use led to a reason-
able flow model. However, in some situations you might be tempted to apply the
Bernoulli equation where the restrictions are not satisfied. Some subtle cases that vio-
late the restrictions are discussed briefly in this section.

Example Problem 6.3 examined flow in a nozzle. In a subsonic nozzle (a con-
verging section) the pressure drops, accelerating a flow. Because the pressure drops
and the walls of the nozzle converge, there is no flow separation from the walls and
the boundary layer remains thin. In addition, a nozzle is usually relatively short so
frictional effects are not significant. All of this leads to the conclusion that the
Bernoulli equation is suitable for use for subsonic nozzles.

Sometimes we need to decelerate a flow. This can be accomplished using a sub-
sonic diffuser (a diverging section), or by using a sudden expansion (e.g., from a pipe
into a reservoir). In these devices the flow decelerates because of an adverse pressure
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gradient. As we discussed in Section 2-6, an adverse pressure gradient tends to lead
to rapid growth of the boundary layer and its separation.’ Hence, we should be care-
ful in applying the Bernoulli equation in such devices—at best, it will be an approxi-
mation. Because of area blockage caused by boundary-layer growth, pressure rise in
actual diffusers always is less than that predicted for inviscid one-dimensional flow.

The Bernoulli equation was a reasonable model for the siphon of Exam-
ple Problem 6.4 because the entrance was well rounded, the bends were gentle, and
the overall length was short. Flow separation, which can occur at inlets with sharp
corners and in abrupt bends, causes the flow to depart from that predicted by a one-
dimensional model and the Bernoulli equation. Frictional effects would not be negli-
gible if the tube were long.

Example Problem 6.5 presented an open-channel flow analogous to that in a
nozzle, for which the Bernoulli equation is a good flow model. The hydraulic jump®
is an example of an open-channel flow with adverse pressure gradient. Flow through
a hydraulic jump is mixed violently, making it impossible to identify streamlines.
Thus the Bernoulli equation cannot be used to model flow through a hydraulic jump.

The Bernoulli equation cannot be applied through a machine such as a propeller,
pump, turbine, or windmill. The equation was derived by integrating along a stream
tube (Section 4-4) or a streamline (Section 6-3) in the absence of moving surfaces
such as blades or vanes. It is impossible to have locally steady flow or to identify
streamlines during flow through a machine. Hence, while the Bernoulli equation may
be applied between points before a machine, or between points after a machine (as-
suming its restrictions are satisfied), it cannot be applied through the machine. (In
effect, a machine will change the value of the Bernoulli constant.)

Finally, compressibility must be considered for flow of gases. Density changes
caused by dynamic compression due to motion may be neglected for engineering
purposes if the local Mach number remains below about M = 0.3, as noted in Exam-
ple Problems 6.3 and 6.6. Temperature changes can cause significant changes in den-
sity of a gas, even for low-speed flow. Thus the Bernoulli equation could not be
applied to air flow through a heating element (e.g., of a hand-held hair dryer) where
temperature changes are significant.

THE BERNOULLI EQUATION INTERPRETED AS AN ENERGY EQUATION

The Bemnoulli equation, Eq. 6.8, was obtained by integrating Euler’s equation along a
streamline for steady, incompressible, frictionless flow. Thus Eq. 6.8 was derived
from the momentum equation for a fluid particle.

An equation identical in form to Eq. 6.8 (although requiring very different re-
strictions) may be obtained from the first law of thermodynamics. Our objective in this
section is to reduce the energy equation to the form of the Bernoulli equation given by
Eq. 6.8. Having arrived at this form, we then compare the restrictions on the two equa-
tions to help us understand more clearly the restrictions on the use of Eq. 6.8.

Consider steady flow in the absence of shear forces. We choose a control volume
bounded by streamlines along its periphery. Such a boundary, shown in Fig. 6.5,
often is called a stream tube.

% See the NCFMF video Flow Visualization.
¢ See the NCFMF videos Waves in Fluids and Stratified Flow for examples of this behavior.
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Streamlines

Fig. 6.5 Flow through a stream tube.

Basic equation:
=0(1) =0(2) = 0(3) =0(4)

Q‘%‘%M‘%Mr=gf epdV+f (e+pv)pV-di  (4.56)
I jev cs

2
e=u+—+gz
2

Restrictions: (1) W, = 0.
(2) Wepeor = 0.
(3) Woser = 0.
(4) Steady flow.
(5) Uniform flow and properties at each section.

(Remember that here v represents the specific volume, and u represents the specific
internal energy, not velocity!) Under these restrictions, Eq. 4.56 becomes

1% V2 :
[“1 + oy + 7[ + 87 J(_prlAl) + [“2 + vy + 72 + 822](PZV2A2) -0=0

But from continuity under these restrictions,

=04

g/j pdV+fpV-dZ=0
tCV cs

or
(=pVA) + (pVaA) =0
That is,
m = pViA; = p,V7,A,
Also

50 _50dn_50 .

= T dmdi  dm

Thus, from the energy equation,

V3 v , | .
PyUy + =+ g2, |- Py + -+ gz m+(u2—u1—g)m=0
2 2 dm
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or

v? V3 80
plvl+7+gzl = DUy +—2—+g22+ Uy —uy — —

dm
Under the additional assumption (6) of incompressible flow, v, = v, = 1/p and
hence
p Vi P, V3 ( SQ)
— gy = A= tgn Uy —uy - —— 6.14)
p 2 p 2 dm

Equation 6.14 would reduce to the Bernoulli equation if the term in parentheses were
zero. Thus, under the further restriction,

T (uy — uy — 6Qldm) = 0
the energy equation reduces to

v? v3
PLill g =222, 4
p p 2
or
2
PV + gz = constant (6.15)
p 2

Equation 6.15 is identical in form to the Bernoulli equation, Eq. 6.8. The
Bernoulli equation was derived from momentum considerations (Newton’s second
law), and is valid for steady, incompressible, frictionless flow along a streamline.
Equation 6.15 was obtained by applying the first law of thermodynamics to a stream
tube control volume, subject to restrictions 1 through 7 above. Thus the Bemoulli
equation (Eq. 6.8) and the identical form of the energy equation (Eq. 6.15) were de-
veloped from entirely different models, coming from entirely different basic con-
cepts, and involving different restrictions.

Note that restriction 7 was necessary to obtain the Bernoulli equation from the
first law of thermodynamics. This restriction can be satistied if 6Q/dm is zero (there
is no heat transfer to the fluid) and u, = u, (there is no change in the internal thermal
energy of the fluid). The restriction also is satisfied if (w, — u,) and 6Q/dm are
nonzero provided that the two terms are equal. That this is true for incompressible
frictionless flow is shown in Example Problem 6.7.

MPLE 6.7 Internal Energy and Heat Transfer in Frictionless Incompressihle Flow
Consider frictionless, incompressible flow with heat transfer. Show that

_%

Uy — U dm

MPLE PROBLEM 6.7

VEN: Frictionless, incompressible flow with heat transfer.

50

w: u2—u1=dm
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SOLUTION:

In general, internal energy can be expressed as u = u(7, v). For incompressible flow, v = constant, and u =

u(T). Thus the thermodynamic state of the fluid is determined by the single thermodynamic property,

T. For any process, the internal energy change, u, — u,, depends only on the temperatures at the end

states. 4
From the Gibbs equation, Tds = du + p dp, valid for a pure substance undergoing any process, we |

obtain

Tds = du

for incompressible flow, since dv = 0. Since the internal energy change, du, between specified end
states, is independent of the process, we take a reversible process, for which Tds = d(6Q/dm) = du.
Therefore,

Y
L7) 1 dm <

For the special case considered in this section, it is true that the first law of ther-
modynamics reduces to the Bernoulli equation. Each term in Eq. 6.15 has dimensions
of energy per unit mass (we sometimes refer to the three terms in the equation as the
“pressure” energy, kinetic energy, and potential energy per unit mass of the fluid). It
is not surprising that Eq. 6.15 contains energy terms—after all, we used the first law
of thermodynamics in deriving it. How did we end up with the same energy-like
terms in the Bernoulli equation, which we derived from the momentum equation?
The answer is because we integrated the momentum equation (which involves force
terms) along a streamline (which involves distance), and by doing so ended up with
work or energy terms (work being defined as force times distance): The work of
gravity and pressure forces leads to a kinetic energy change (which came from inte-
grating momentum over distance). In this context, we can think of the Bernoulli
equation as a mechanical energy balance—the mechanical energy (“pressure” plus
potential plus kinetic) will be constant. We must always bear in mind that for the
Bernoulli equation to be valid along a streamline requires an incompressible inviscid
flow, in addition to steady flow. If we had density changes they would continuously
allow conversion of any or all of the mechanical energy forms to internal thermal en-
ergy, and vice versa. Friction always converts mechanical energy to thermal energy
(appearing either as a gain of internal thermal energy or as heat generation, or both).
In the absence of density changes and friction, the mechanisms linking the mechani-
cal and internal thermal energy do not exist, and restriction 7 holds—any internal
thermal energy changes will result only from a heat transfer process and be independ-
ent of the fluid mechanics, and the thermodynamic and mechanical energies will be
uncoupled.

In summary, when the conditions are satisfied for the Bernoulli equation to be
valid, we can consider separately the mechanical energy and the internal thermal en-
ergy of a fluid particle (this is illustrated in Example Problem 6.8); when they are not
satisfied, there will be an interaction between these energies, the Bernoulli equation
becomes invalid, and we must use the full first law of thermodynamics.

EXAMPLE 6.8 Frictionless Flow with Heat Transfer

Water flows steadily from a large open reservoir through a short length of pipe and a
nozzle with cross-sectional area A = 0.864 in.2 A well-insulated 10 kW heater sur-
rounds the pipe. Find the temperature rise of the water.
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AMPLE PROBLEM 6.8

IVEN: Water flows from a large reservoir through the sys-
tem shown and discharges to atmospheric pressure.
The heater is 10 kW; Ay = 0.864 in.2

IND: The temperature rise of the water between points ®
: and @

. . )4 v?
joverning equations: — + 7 + gz = constant
P

=)

% pdv+fpv-dx=o
Ccv CS

=0(4) = 0(4) =0(1)
Q-—)/,I—}‘V/m=gj epdV+J’ (u+p'o+v—2+gz deZ
! Jev cs 2

ssumptions: (1) Steady flow.

' (2) Frictionless flow.

(3) Incompressible flow.

(4) No shaft work, no shear work.
(5) Flow along a streamline.

inder the assumptions listed, the first law of thermodynamics for the CV shown becomes

. V2 .-
Q=J (u+pv+—+gz pV - dA
cs 2

v? _ v? -
=I u+po+—+gz pV-dA+J u+pv+—+gz|pV-dA
A 2 Ay 2

uniform properties at D and @
) v2 V3
L e ) N O

rom conservation of mass, pV|A, = pV,A; = m, so

S V3 v3
OQ=m|uy —u + &+—2+gzz - ﬂ+—l+gzl
p 2 P 2

frictionless, incompressible, steady flow, along a streamline,

p,V?
= 4+ — + gz = constant
p 2

0 = m(u, — u)
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and

Since, for an incompressible fluid, u, — #, = ¢(T; — T)), then

From continuity,

To find V,, write the Bernoulli equation between the free surface at @ and point @

Since p; = pg and V5 = 0, then

Assuming no heat loss to the surroundings, we obtain

-7 =2
mc
m = pVyAy

2 2
&+b_+gz3=ﬂ+h+gz4
p 2 P 2

2 322ft 10ft
V, = 1/2g(z3 —24) = J X -ST X = 254 ft/s

1.94 4ft 0864in? 2
SI#XZS bl X X ﬁ_ 5 = 0.2%6slug/s

W= pVyA, =
PYafla s 144 in.

Q 10kW 3413 Bu hr s slug _ lbm-°R
L-T=—-= X X X X — X

mc kW .-hr 3600s 0.296slug 32.21bm 1Btu
T, -7, =0995°R, T,-T,

This problem illustrates that:
v In general, the first law of thermodynamics and the
Bernoulli equation are independent equations.
v/ For an incompressible, inviscid flow the internal thermal
energy is only changed by a heat transfer process, and is
independent of the fluid mechanics.

6-5

ENERGY GRADE LINE AND HYDRAULIC GRADE LINE

For steady, frictionless, incompressible flow along a streamline, we have shown that
the first law of thermodynamics reduces to the Bernoulli equation. From Eq. 6.15 we
conclude that there is no loss of mechanical energy in such a flow.
Often it is convenient to represent the mechanical energy level of a flow graphi-
cally. The energy equation in the form of Eq. 6.15 suggests such a representation. Di-

viding Eq. 6.15 by g, we obtain
2
PV z = H = constant (6.16)

rg  2¢

Each term in Eq. 6.16 has dimensions of length, or “head” of flowing fluid. The
individual terms are
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Na the head due to local static pressure

pg’  (“pressure” energy per unit weight of the flowing fluid)
y? the head due to local dynamic pressure

Z > (kinetic energy per unit weight of flowing fluid)

Z, the elevation head
(potential energy per unit weight of the flowing fluid)

H, the total head for the flow
(total mechanical energy per unit weight of the flowing fluid)

The energy grade line (EGL) represents the total head height. As shown by
Eq. 6.16, the EGL height remains constant for frictionless flow when no work is
done on or by the flowing liquid, although the individual static pressure, dynamic
pressure, and elevation heads may vary. We recall from Section 6-3 that a pitot-
static tube placed in the flow measures the stagnation pressure (static plus
dynamic), and it will obviously be installed at the local height z of the flow;
hence, the height of the liquid in a column attached to the tube will equal the sum
of the three heads in Eq. 6.16. This height directly indicates the value of H, or the
EGL.

The hydraulic grade line (HGL) height represents the sum of the elevation and
static pressure heads, z + p/pg. In a static pressure tap attached to the flow conduit,
liquid would rise to the HGL height. For open-channel flow, the HGL is at the liquid
free surface.

The difference in heights between the EGL and the HGL represents the dynamic
(velocity) head, V?*/2g. The relationship among the EGL, HGL, and velocity head is
illustrated schematically in Fig. 6.6 for frictionless flow from a tank through a pipe
with a reducer.

Static taps and total head tubes connected to manometers are shown schemati-
cally in Fig. 6.6. The static taps give readings corresponding to the HGL height. The
total head tubes give readings corresponding to the EGL height.

The total head of the flow shown in Fig. 6.6 is obtained by applying Eq. 6.16 at
point (D, the free surface in the large reservoir. There the velocity is negligible and
the pressure is atmospheric (zero gage). Thus total head is equal to z,. This defines
the height of the energy grade line, which remains constant for this flow, since there
18 no friction or work.

The velocity head increases from zero to V3/2g as the liquid accelerates into
the first section of constant-diameter tube. Hence, since the EGL height is constant
the HGL must decrease in height. When the velocity becomes constant, the HGL
height stays constant.

The velocity increases again in the reducer between sections @ and @. As the
velocity head increases, the HGL height drops. When the velocity becomes constant
between sections @ and @ the HGL stays constant at a lower height.

At the free discharge at section (4), the static head is zero (gage). There the
HGL height is equal to z;. As shown, the velocity head is V3/2g. The sum of the
HGL height and velocity head equals the EGL height. (The static head is negative be-
tween sections 3 and (® because the pipe centerline is above the HGL.)

The effects of friction on a flow will be discussed in detail in Chapter 8. The
effect of friction is to convert mechanical energy to internal thermal energy.
Thus friction reduces the total head of the flowing fluid, causing a gradual reduction
in the EGL height.
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Fig. 6.6 Energy and hydraulic grade lines for frictionless flow.

Work addition to the fluid, for example as delivered by a pump, increases the EGL
height. The effect of work interactions with a flow will be discussed in Chapters 8 and 10.

- 6-6  UNSTEADY BERNOULLI EQUATION —INTEGRATION OF EULER’S
EQUATION ALONG A STREAMLINE (CD-ROM)

6-7 IRROTATIONAL FLOW (CD-ROM)

6-8 SUMMARY

In this chapter we have:
v

Derived Euler’s equations in vector form and in rectangular, cylindrical, and
streamline coordinates.

v Obtained Bernoulli’s equation by integrating Euler’s equation along a steady-flow
strearnline, and discussed its restrictions. We have also seen how for a steady, in-

compressible flow through a stream tube the first law of thermodynamics reduces
to the Bernoulli equation if certain restrictions apply.



