
3.1 Basic Physical Laws 
of Fluid Mechanics

Motivation. In analyzing fluid motion, we might take one of two paths: (1) seeking to
describe the detailed flow pattern at every point (x, y, z) in the field or (2) working
with a finite region, making a balance of flow in versus flow out, and determining gross
flow effects such as the force or torque on a body or the total energy exchange. The
second is the “control-volume” method and is the subject of this chapter. The first is
the “differential” approach and is developed in Chap. 4.

We first develop the concept of the control volume, in nearly the same manner as
one does in a thermodynamics course, and we find the rate of change of an arbitrary
gross fluid property, a result called the Reynolds transport theorem. We then apply this
theorem, in sequence, to mass, linear momentum, angular momentum, and energy, thus
deriving the four basic control-volume relations of fluid mechanics. There are many
applications, of course. The chapter then ends with a special case of frictionless, shaft-
work-free momentum and energy: the Bernoulli equation. The Bernoulli equation is a
wonderful, historic relation, but it is extremely restrictive and should always be viewed
with skepticism and care in applying it to a real (viscous) fluid motion.

It is time now to really get serious about flow problems. The fluid-statics applications
of Chap. 2 were more like fun than work, at least in my opinion. Statics problems ba-
sically require only the density of the fluid and knowledge of the position of the free
surface, but most flow problems require the analysis of an arbitrary state of variable
fluid motion defined by the geometry, the boundary conditions, and the laws of me-
chanics. This chapter and the next two outline the three basic approaches to the analy-
sis of arbitrary flow problems:

1. Control-volume, or large-scale, analysis (Chap. 3)
2. Differential, or small-scale, analysis (Chap. 4)
3. Experimental, or dimensional, analysis (Chap. 5)

The three approaches are roughly equal in importance, but control-volume analysis is
“more equal,” being the single most valuable tool to the engineer for flow analysis. It
gives “engineering” answers, sometimes gross and crude but always useful. In princi-
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Systems versus Control Volumes

ple, the differential approach of Chap. 4 can be used for any problem, but in practice
the lack of mathematical tools and the inability of the digital computer to model small-
scale processes make the differential approach rather limited. Similarly, although the
dimensional analysis of Chap. 5 can be applied to any problem, the lack of time and
money and generality often makes experimentation a limited approach. But a control-
volume analysis takes about half an hour and gives useful results. Thus, in a trio of ap-
proaches, the control volume is best. Oddly enough, it is the newest of the three. Dif-
ferential analysis began with Euler and Lagrange in the eighteenth century, and
dimensional analysis was pioneered by Lord Rayleigh in the late nineteenth century,
but the control volume, although proposed by Euler, was not developed on a rigorous
basis as an analytical tool until the 1940s.

All the laws of mechanics are written for a system, which is defined as an arbitrary
quantity of mass of fixed identity. Everything external to this system is denoted by the
term surroundings, and the system is separated from its surroundings by its bound-
aries. The laws of mechanics then state what happens when there is an interaction be-
tween the system and its surroundings.

First, the system is a fixed quantity of mass, denoted by m. Thus the mass of the
system is conserved and does not change.1 This is a law of mechanics and has a very
simple mathematical form, called conservation of mass:

msyst ! const

or "
d
d
m
t
" ! 0

(3.1)

This is so obvious in solid-mechanics problems that we often forget about it. In fluid
mechanics, we must pay a lot of attention to mass conservation, and it takes a little
analysis to make it hold.

Second, if the surroundings exert a net force F on the system, Newton’s second law
states that the mass will begin to accelerate2

F ! ma ! m "
d
d
V
t
" ! "

d
d
t
" (mV) (3.2)

In Eq. (2.12) we saw this relation applied to a differential element of viscous incom-
pressible fluid. In fluid mechanics Newton’s law is called the linear-momentum rela-
tion. Note that it is a vector law which implies the three scalar equations Fx ! max,
Fy ! may, and Fz ! maz.

Third, if the surroundings exert a net moment M about the center of mass of the
system, there will be a rotation effect

M ! "
d
d
H
t
" (3.3)

where H ! #(r ! V) $m is the angular momentum of the system about its center of
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1We are neglecting nuclear reactions, where mass can be changed to energy.
2We are neglecting relativistic effects, where Newton’s law must be modified.



mass. Here we call Eq. (3.3) the angular-momentum relation. Note that it is also a vec-
tor equation implying three scalar equations such as Mx ! dHx /dt.

For an arbitrary mass and arbitrary moment, H is quite complicated and contains
nine terms (see, e.g., Ref. 1, p. 285). In elementary dynamics we commonly treat only
a rigid body rotating about a fixed x axis, for which Eq. (3.3) reduces to

Mx ! Ix "
d
d
t
" (%x) (3.4)

where %x is the angular velocity of the body and Ix is its mass moment of inertia about
the x axis. Unfortunately, fluid systems are not rigid and rarely reduce to such a sim-
ple relation, as we shall see in Sec. 3.5.

Fourth, if heat dQ is added to the system or work dW is done by the system, the
system energy dE must change according to the energy relation, or first law of ther-
modynamics,

dQ & dW ! dE

or "
d
d
Q
t
" & "

d
d
W
t
" ! "

d
d
E
t
"

(3.5)

Like mass conservation, Eq. (3.1), this is a scalar relation having only a single com-
ponent.

Finally, the second law of thermodynamics relates entropy change dSto heat added
dQ and absolute temperature T:

dS' "
d
T
Q
" (3.6)

This is valid for a system and can be written in control-volume form, but there are al-
most no practical applications in fluid mechanics except to analyze flow-loss details
(see Sec. 9.5).

All these laws involve thermodynamic properties, and thus we must supplement
them with state relations p ! p((, T) and e ! e((, T) for the particular fluid being stud-
ied, as in Sec. 1.6.

The purpose of this chapter is to put our four basic laws into the control-volume
form suitable for arbitrary regions in a flow:

1. Conservation of mass (Sec. 3.3)
2. The linear-momentum relation (Sec. 3.4)
3. The angular-momentum relation (Sec. 3.5)
4. The energy equation (Sec. 3.6)

Wherever necessary to complete the analysis we also introduce a state relation such as
the perfect-gas law.

Equations (3.1) to (3.6) apply to either fluid or solid systems. They are ideal for solid
mechanics, where we follow the same system forever because it represents the product
we are designing and building. For example, we follow a beam as it deflects under load.
We follow a piston as it oscillates. We follow a rocket system all the way to Mars.

But fluid systems do not demand this concentrated attention. It is rare that we wish
to follow the ultimate path of a specific particle of fluid. Instead it is likely that the
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Fig. 3.1 Volume rate of flow
through an arbitrary surface: (a) an
elemental area dA on the surface;
(b) the incremental volume swept
through dA equals V dt dA cos ).

fluid forms the environment whose effect on our product we wish to know. For the
three examples cited above, we wish to know the wind loads on the beam, the fluid
pressures on the piston, and the drag and lift loads on the rocket. This requires that the
basic laws be rewritten to apply to a specific region in the neighborhood of our prod-
uct. In other words, where the fluid particles in the wind go after they leave the beam
is of little interest to a beam designer. The user’s point of view underlies the need for
the control-volume analysis of this chapter.

Although thermodynamics is not at all the main topic of this book, it would be a
shame if the student did not review at least the first law and the state relations, as dis-
cussed, e.g., in Refs. 6 and 7.

In analyzing a control volume, we convert the system laws to apply to a specific re-
gion which the system may occupy for only an instant. The system passes on, and other
systems come along, but no matter. The basic laws are reformulated to apply to this
local region called a control volume. All we need to know is the flow field in this re-
gion, and often simple assumptions will be accurate enough (e.g., uniform inlet and/or
outlet flows). The flow conditions away from the control volume are then irrelevant.
The technique for making such localized analyses is the subject of this chapter.

All the analyses in this chapter involve evaluation of the volume flow Q or mass flow
ṁ passing through a surface (imaginary) defined in the flow.

Suppose that the surface S in Fig. 3.1a is a sort of (imaginary) wire mesh through
which the fluid passes without resistance. How much volume of fluid passes through S
in unit time? If, typically, V varies with position, we must integrate over the elemental
surface dA in Fig. 3.1a. Also, typically V may pass through dA at an angle ) off the
normal. Let n be defined as the unit vector normal to dA. Then the amount of fluid swept
through dA in time dt is the volume of the slanted parallelopiped in Fig. 3.1b:

d! ! V dt dA cos ) ! (V " n) dA dt

The integral of d!/dt is the total volume rate of flow Q through the surface S

Q ! !
S

(V * n) dA ! !
S

Vn dA (3.7)
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3.2 The Reynolds Transport
Theorem

We could replace V " n by its equivalent, Vn, the component of V normal to dA, but
the use of the dot product allows Q to have a sign to distinguish between inflow and
outflow. By convention throughout this book we consider n to be the outward normal
unit vector. Therefore V " n denotes outflow if it is positive and inflow if negative. This
will be an extremely useful housekeeping device when we are computing volume and
mass flow in the basic control-volume relations.

Volume flow can be multiplied by density to obtain the mass flow ṁ . If density
varies over the surface, it must be part of the surface integral

ṁ ! !
S

((V" n) dA ! !
S

(Vn dA

If density is constant, it comes out of the integral and a direct proportionality results:

Constant density: ṁ ! (Q

To convert a system analysis to a control-volume analysis, we must convert our math-
ematics to apply to a specific region rather than to individual masses. This conversion,
called the Reynolds transport theorem, can be applied to all the basic laws. Examin-
ing the basic laws (3.1) to (3.3) and (3.5), we see that they are all concerned with the
time derivative of fluid properties m, V, H, and E. Therefore what we need is to relate
the time derivative of a system property to the rate of change of that property within
a certain region.

The desired conversion formula differs slightly according to whether the control vol-
ume is fixed, moving, or deformable. Figure 3.2 illustrates these three cases. The fixed
control volume in Fig. 3.2a encloses a stationary region of interest to a nozzle designer.
The control surface is an abstract concept and does not hinder the flow in any way. It
slices through the jet leaving the nozzle, circles around through the surrounding at-
mosphere, and slices through the flange bolts and the fluid within the nozzle. This par-
ticular control volume exposes the stresses in the flange bolts, which contribute to ap-
plied forces in the momentum analysis. In this sense the control volume resembles the
free-body concept, which is applied to systems in solid-mechanics analyses.

Figure 3.2b illustrates a moving control volume. Here the ship is of interest, not the
ocean, so that the control surface chases the ship at ship speed V. The control volume
is of fixed volume, but the relative motion between water and ship must be considered.
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Fig. 3.2 Fixed, moving, and de-
formable control volumes: (a) fixed
control volume for nozzle-stress
analysis; (b) control volume mov-
ing at ship speed for drag-force
analysis; (c) control volume de-
forming within cylinder for tran-
sient pressure-variation analysis.



One-Dimensional Fixed Control
Volume

If V is constant, this relative motion is a steady-flow pattern, which simplifies the analy-
sis.3 If V is variable, the relative motion is unsteady, so that the computed results are
time-variable and certain terms enter the momentum analysis to reflect the noninertial
frame of reference.

Figure 3.2c shows a deforming control volume. Varying relative motion at the bound-
aries becomes a factor, and the rate of change of shape of the control volume enters
the analysis. We begin by deriving the fixed-control-volume case, and we consider the
other cases as advanced topics.

As a simple first example, consider a duct or streamtube with a nearly one-dimensional
flow V ! V(x), as shown in Fig. 3.3. The selected control volume is a portion of the
duct which happens to be filled exactly by system 2 at a particular instant t. At time 
t + dt, system 2 has begun to move out, and a sliver of system 1 has entered from the
left. The shaded areas show an outflow sliver of volume AbVb dt and an inflow volume
AaVa dt.

Now let B be any property of the fluid (energy, momentum, etc.), and let , ! dB/dm
be the intensive value or the amount of B per unit mass in any small portion of the
fluid. The total amount of B in the control volume is thus

BCV ! !
CV

,( d! , ! "
d
d
m
B
" (3.8)
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Fig. 3.3 Example of inflow and
outflow as three systems pass
through a control volume: (a) Sys-
tem 2 fills the control volume at
time t; (b) at time t + dt system 2
begins to leave and system 1 
enters.

3A wind tunnel uses a fixed model to simulate flow over a body moving through a fluid. A tow tank
uses a moving model to simulate the same situation.
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Arbitrary Fixed Control Volume

where ( d! is a differential mass of the fluid. We want to relate the rate of change of
BCV to the rate of change of the amount of B in system 2 which happens to coincide
with the control volume at time t. The time derivative of BCV is defined by the calcu-
lus limit

"
d
d
t
" (BCV) ! "

d
1
t
" BCV(t + dt) & "

d
1
t
" BCV(t)

! "
d
1
t
" [B2(t + dt) & (,( d!)out + (,(d!)in] & "

d
1
t
" [B2(t)]

! "
d
1
t
" [B2(t + dt) & B2(t)] & (,(AV)out + (,(AV)in

The first term on the right is the rate of change of B within system 2 at the instant it
occupies the control volume. By rearranging the last line of the above equation, we
have the desired conversion formula relating changes in any property B of a local sys-
tem to one-dimensional computations concerning a fixed control volume which in-
stantaneously encloses the system.

"
d
d
t
" (Bsyst) ! "

d
d
t
" "!CV

,( d!# + (,(AV)out & (,(AV)in (3.9)

This is the one-dimensional Reynolds transport theorem for a fixed volume. The three
terms on the right-hand side are, respectively,

1. The rate of change of B within the control volume
2. The flux of B passing out of the control surface
3. The flux of B passing into the control surface

If the flow pattern is steady, the first term vanishes. Equation (3.9) can readily be gen-
eralized to an arbitrary flow pattern, as follows.

Figure 3.4 shows a generalized fixed control volume with an arbitrary flow pattern
passing through. The only additional complication is that there are variable slivers of
inflow and outflow of fluid all about the control surface. In general, each differential
area dA of surface will have a different velocity V making a different angle ) with the
local normal to dA. Some elemental areas will have inflow volume (VA cos ))in dt, and
others will have outflow volume (VA cos ))out dt, as seen in Fig. 3.4. Some surfaces
might correspond to streamlines () ! 90°) or solid walls (V ! 0) with neither inflow
nor outflow. Equation (3.9) generalizes to

"
d
d
t
" (Bsyst) ! "

d
d
t
" "!CV

,(d!# + !
CS

,(V cos ) dAout & !
CS

,(V cos ) dAin (3.10)

This is the Reynolds transport theorem for an arbitrary fixed control volume. By let-
ting the property B be mass, momentum, angular momentum, or energy, we can rewrite
all the basic laws in control-volume form. Note that all three of the control-volume in-
tegrals are concerned with the intensive property ,. Since the control volume is fixed
in space, the elemental volumes d ! do not vary with time, so that the time derivative
of the volume integral vanishes unless either , or ( varies with time (unsteady flow).
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Fig. 3.4 Generalization of Fig. 3.3
to an arbitrary control volume with
an arbitrary flow pattern.

Equation (3.10) expresses the basic formula that a system derivative equals the rate
of change of B within the control volume plus the flux of B out of the control surface
minus the flux of B into the control surface. The quantity B (or ,) may be any vector
or scalar property of the fluid. Two alternate forms are possible for the flux terms. First
we may notice that V cos ) is the component of V normal to the area element of the
control surface. Thus we can write

Flux terms ! !
CS

,(Vn dAout & !
CS

,(Vn dAin ! !
CS

, dṁout & !
CS

, dṁin (3.11a)

where dṁ ! (Vn dA is the differential mass flux through the surface. Form (3.11a)
helps visualize what is being calculated.

A second alternate form offers elegance and compactness as advantages. If n is de-
fined as the outward normal unit vector everywhere on the control surface, then V "
n ! Vn for outflow and V " n ! & Vn for inflow. Therefore the flux terms can be rep-
resented by a single integral involving V " n which accounts for both positive outflow
and negative inflow

Flux terms ! !
CS

,((V " n) dA (3.11b)

The compact form of the Reynolds transport theorem is thus

"
d
d
t
" (Bsyst) ! "

d
d
t
" "!CV

,( d!# + !
CV

,((V " n) dA (3.12)

This is beautiful but only occasionally useful, when the coordinate system is ideally
suited to the control volume selected. Otherwise the computations are easier when the
flux of B out is added and the flux of B in is subtracted, according to (3.10) or (3.11a).
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Control Volume of Constant
Shape but Variable Velocity4

Arbitrarily Moving and
Deformable Control Volume5

Control Volume Moving at
Constant Velocity

The time-derivative term can be written in the equivalent form

"
d
d
t
" "!CV

,( d!# !!
CV

"
-
-
t
" (,() d ! (3.13)

for the fixed control volume since the volume elements do not vary.

If the control volume is moving uniformly at velocity Vs, as in Fig. 3.2b, an observer
fixed to the control volume will see a relative velocity Vr of fluid crossing the control
surface, defined by

Vr # V $ Vs (3.14)

where V is the fluid velocity relative to the same coordinate system in which the con-
trol volume motion Vs is observed. Note that Eq. (3.14) is a vector subtraction. The
flux terms will be proportional to Vr, but the volume integral is unchanged because the
control volume moves as a fixed shape without deforming. The Reynolds transport the-
orem for this case of a uniformly moving control volume is

"
d
d
t
" (Bsyst) ! "

d
d
t
" "!CV

,( d!# + !
CS

,((Vr " n) dA (3.15)

which reduces to Eq. (3.12) if Vs $ 0.

If the control volume moves with a velocity Vs(t) which retains its shape, then the vol-
ume elements do not change with time but the boundary relative velocity Vr !
V(r, t) & Vs(t) becomes a somewhat more complicated function. Equation (3.15) is un-
changed in form, but the area integral may be more laborious to evaluate.

The most general situation is when the control volume is both moving and deforming
arbitrarily, as illustrated in Fig. 3.5. The flux of volume across the control surface is
again proportional to the relative normal velocity component Vr " n, as in Eq. (3.15).
However, since the control surface has a deformation, its velocity Vs ! Vs(r, t), so that
the relative velocity Vr ! V(r, t) & Vs(r, t) is or can be a complicated function, even
though the flux integral is the same as in Eq. (3.15). Meanwhile, the volume integral
in Eq. (3.15) must allow the volume elements to distort with time. Thus the time de-
rivative must be applied after integration. For the deforming control volume, then, the
transport theorem takes the form

"
d
d
t
" (Bsyst) ! "

d
d
t
" "!CV

,( d!# + !
CS

,((Vr " n) dA (3.16)

This is the most general case, which we can compare with the equivalent form for a
fixed control volume
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Fig. 3.5 Relative-velocity effects
between a system and a control
volume when both move and de-
form. The system boundaries move
at velocity V, and the control sur-
face moves at velocity Vs.

"
d
d
t
" (Bsyst) ! !

CV
"
-
-
t
" (,() d! + !

CS
,((V " n) dA (3.17)

The moving and deforming control volume, Eq. (3.16), contains only two complica-
tions: (1) The time derivative of the first integral on the right must be taken outside,
and (2) the second integral involves the relative velocity Vr between the fluid system
and the control surface. These differences and mathematical subtleties are best shown
by examples.

In many applications, the flow crosses the boundaries of the control surface only at cer-
tain simplified inlets and exits which are approximately one-dimensional; i.e., the flow
properties are nearly uniform over the cross section of the inlet or exit. Then the double-
integral flux terms required in Eq. (3.16) reduce to a simple sum of positive (exit) and
negative (inlet) product terms involving the flow properties at each cross section

!
CS

,((Vr " n) dA ! %(,i(iVriAi)out & %(,i(iVriAi)in (3.18)

An example of this situation is shown in Fig. 3.6. There are inlet flows at sections 1
and 4 and outflows at sections 2, 3, and 5. For this particular problem Eq. (3.18) would
be

!
CS

,((Vr " n) dA ! ,2(2Vr2A2 + ,3(3Vr3A3

+ ,5(5Vr5A5 & ,1(1Vr1A1 & ,4(4Vr4A4 (3.19)
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Fig. 3.6 A control volume with
simplified one-dimensional inlets
and exits.

with no contribution from any other portion of the control surface because there is no
flow across the boundary.

EXAMPLE 3.1

A fixed control volume has three one-dimensional boundary sections, as shown in Fig. E3.1. The
flow within the control volume is steady. The flow properties at each section are tabulated be-
low. Find the rate of change of energy of the system which occupies the control volume at this
instant.

Section Type (, kg/m3 V, m/s A, m2 e, J/kg

1 Inlet 800 5.0 2.0 300
2 Inlet 800 8.0 3.0 100
3 Outlet 800 17.0 2.0 150

Solution

The property under study here is energy, and so B ! E and , ! dE/dm ! e, the energy per unit
mass. Since the control volume is fixed, Eq. (3.17) applies:

""
d
d
E
t
"#syst

! !
CV

"
-
-
t
"  (e() d! + !

CS
e((V " n) dA

The flow within is steady, so that -(e()/-t $ 0 and the volume integral vanishes. The area inte-
gral consists of two inlet sections and one outlet section, as given in the table

""
d
d
E
t
"#syst

! & e1(1A1V1 & e2(2A2V2 + e3(3A3V3

3.2 The Reynolds Transport Theorem 139

CV
1

2

3

4

5

All sections i:
Vri approximately
normal to area Ai

CS

Section 2:
uniform Vr2, A2,   2,   2, etc.ρ β

E3.1 

3

21

CV



E3.2 

Introducing the numerical values from the table, we have

""
d
d
E
t
"#syst

! & (300 J/kg)(800 kg/m3)(2 m2)(5 m/s) & 100(800)(3)(8) + 150(800)(2)(17)

! (& 2,400,000 & 1,920,000 + 4,080,000) J/s

! & 240,000 J/s ! & 0.24 MJ/s Ans.

Thus the system is losing energy at the rate of 0.24 MJ/s ! 0.24 MW. Since we have accounted
for all fluid energy crossing the boundary, we conclude from the first law that there must be heat
loss through the control surface or the system must be doing work on the environment through
some device not shown. Notice that the use of SI units leads to a consistent result in joules per
second without any conversion factors. We promised in Chap. 1 that this would be the case.

Note: This problem involves energy, but suppose we check the balance of mass also.
Then B ! mass m, and B ! dm/dm ! unity. Again the volume integral vanishes for steady flow,
and Eq. (3.17) reduces to

""
d
d
m
t
"#syst

! !
CS

((V " n) dA ! & (1A1V1 & (2A2V2 + (3A3V3

! & (800 kg/m3)(2 m2)(5 m/s) & 800(3)(8) + 800(17)(2)

! (& 8000 & 19,200 + 27,200) kg/s ! 0 kg/s

Thus the system mass does not change, which correctly expresses the law of conservation of
system mass, Eq. (3.1).

EXAMPLE 3.2

The balloon in Fig. E3.2 is being filled through section 1, where the area is A1, velocity is V1,
and fluid density is (1. The average density within the balloon is (b(t). Find an expression for
the rate of change of system mass within the balloon at this instant.

Solution

It is convenient to define a deformable control surface just outside the balloon, expanding at 
the same rate R(t). Equation (3.16) applies with Vr ! 0 on the balloon surface and Vr ! V1

at the pipe entrance. For mass change, we take B ! m and , ! dm/dm ! 1. Equation (3.16) 
becomes

""
d
d
m
t
"#syst

! "
d
d
t
" "!CS

( d!# + !
CS

((Vr " n) dA

Mass flux occurs only at the inlet, so that the control-surface integral reduces to the single neg-
ative term & (1A1V1. The fluid mass within the control volume is approximately the average den-
sity times the volume of a sphere. The equation thus becomes

""
d
d
m
t
"#syst

! "
d
d
t
" "(b "

4
3

" .R3# & (1A1V1 Ans.

This is the desired result for the system mass rate of change. Actually, by the conservation law
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3.3 Conservation of Mass

(3.1), this change must be zero. Thus the balloon density and radius are related to the inlet mass
flux by

"
d
d
t
" ((bR3) ! "

4
3
.
" (1A1V1

This is a first-order differential equation which could form part of an engineering analysis of
balloon inflation. It cannot be solved without further use of mechanics and thermodynamics to
relate the four unknowns (b, (1, V1, and R. The pressure and temperature and the elastic prop-
erties of the balloon would also have to be brought into the analysis.

For advanced study, many more details of the analysis of deformable control vol-
umes can be found in Hansen [4] and Potter and Foss [5].

The Reynolds transport theorem, Eq. (3.16) or (3.17), establishes a relation between
system rates of change and control-volume surface and volume integrals. But system
derivatives are related to the basic laws of mechanics, Eqs. (3.1) to (3.5). Eliminating
system derivatives between the two gives the control-volume, or integral, forms of the
laws of mechanics of fluids. The dummy variable B becomes, respectively, mass, lin-
ear momentum, angular momentum, and energy.

For conservation of mass, as discussed in Examples 3.1 and 3.2, B ! m and , !
dm/dm ! 1. Equation (3.1) becomes

""
d
d
m
t
"#syst

! 0 ! "
d
d
t
" "!CV

( d!# + !
CS

((Vr " n) dA (3.20) 

This is the integral mass-conservation law for a deformable control volume. For a fixed
control volume, we have

!
CV

"
-
-
(
t
" d!+ !

CS
((V " n) dA ! 0 (3.21) 

If the control volume has only a number of one-dimensional inlets and outlets, we can
write

!
CV

"
-
-
(
t
" d! + %

i

((iAiVi)out & %
i

((i AiVi)in ! 0 (3.22)

Other special cases occur. Suppose that the flow within the control volume is steady;
then -(/-t $ 0, and Eq. (3.21) reduces to

!
CS

((V " n) dA ! 0 (3.23)

This states that in steady flow the mass flows entering and leaving the control volume
must balance exactly.6 If, further, the inlets and outlets are one-dimensional, we have
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6Throughout this section we are neglecting sources or sinks of mass which might be embedded in the
control volume. Equations (3.20) and (3.21) can readily be modified to add source and sink terms, but this
is rarely necessary.
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for steady flow

%
i

((i AiVi)in ! %
i

((i AiVi)out (3.24)

This simple approximation is widely used in engineering analyses. For example, re-
ferring to Fig. 3.6, we see that if the flow in that control volume is steady, the three
outlet mass fluxes balance the two inlets:

Outflow ! inflow
(2A2V2 + (3A3V3 + (5A5V5 ! (1A1V1 + (4A4V4 (3.25)

The quantity (AV is called the mass flow ṁ passing through the one-dimensional cross
section and has consistent units of kilograms per second (or slugs per second) for SI
(or BG) units. Equation (3.25) can be rewritten in the short form

ṁ2 + ṁ3 + ṁ5 ! ṁ1 + ṁ4 (3.26) 

and, in general, the steady-flow– mass-conservation relation (3.23) can be written as

%
i

(ṁi)out ! %
i

(ṁi)in (3.27) 

If the inlets and outlets are not one-dimensional, one has to compute ṁ by integration
over the section

ṁcs ! !
cs

((V " n) dA (3.28) 

where “cs’’ stands for cross section. An illustration of this is given in Example 3.4.

Still further simplification is possible if the fluid is incompressible, which we may de-
fine as having density variations which are negligible in the mass-conservation re-
quirement.7As we saw in Chap. 1, all liquids are nearly incompressible, and gas flows
can behave as if they were incompressible, particularly if the gas velocity is less than
about 30 percent of the speed of sound of the gas.

Again consider the fixed control volume. If the fluid is nearly incompressible, -(/-t
is negligible and the volume integral in Eq. (3.21) may be neglected, after which the
density can be slipped outside the surface integral and divided out since it is nonzero.
The result is a conservation law for incompressible flows, whether steady or unsteady:

!
CS

(V " n) dA ! 0 (3.29)

If the inlets and outlets are one-dimensional, we have

%
i

(ViAi) out ! %
i

(ViAi)in (3.30)

or % Qout ! % Qin

where Qi ! ViAi is called the volume flow passing through the given cross section.
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7Be warned that there is subjectivity in specifying incompressibility. Oceanographers consider a 0.1
percent density variation very significant, while aerodynamicists often neglect density variations in highly
compressible, even hypersonic, gas flows. Your task is to justify the incompressible approximation when
you make it.
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Again, if consistent units are used, Q ! VA will have units of cubic meters per second
(SI) or cubic feet per second (BG). If the cross section is not one-dimensional, we have
to integrate

QCS ! !
CS

(V " n) dA (3.31)

Equation (3.31) allows us to define an average velocity Vav which, when multiplied by
the section area, gives the correct volume flow

Vav ! "
Q
A

" ! "
A
1

" ! (V " n) dA (3.32)

This could be called the volume-average velocity. If the density varies across the sec-
tion, we can define an average density in the same manner:

(av ! "
A
1

" ! ( dA (3.33)

But the mass flow would contain the product of density and velocity, and the average
product ((V)av would in general have a different value from the product of the aver-
ages

((V)av ! "
A
1

" ! ((V " n) dA & (avVav (3.34)

We illustrate average velocity in Example 3.4. We can often neglect the difference or,
if necessary, use a correction factor between mass average and volume average.

EXAMPLE 3.3

Write the conservation-of-mass relation for steady flow through a streamtube (flow everywhere
parallel to the walls) with a single one-dimensional exit 1 and inlet 2 (Fig. E3.3).

Solution

For steady flow Eq. (3.24) applies with the single inlet and exit

ṁ ! (1A1V1 ! (2A2V2 ! const

Thus, in a streamtube in steady flow, the mass flow is constant across every section of the tube.
If the density is constant, then

Q ! A1V1 ! A2V2 ! const or V2 ! "
A
A

1

2
" V1

The volume flow is constant in the tube in steady incompressible flow, and the velocity increases
as the section area decreases. This relation was derived by Leonardo da Vinci in 1500.

EXAMPLE 3.4

For steady viscous flow through a circular tube (Fig. E3.4), the axial velocity profile is given
approximately by
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V • n = 0
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V2
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E3.5 

u ! U0"1 & "
R
r
"#

m

so that u varies from zero at the wall (r ! R), or no slip, up to a maximum u ! U0 at the cen-
terline r ! 0. For highly viscous (laminar) flow m & "12", while for less viscous (turbulent) flow
m & "17". Compute the average velocity if the density is constant.

Solution

The average velocity is defined by Eq. (3.32). Here V ! iu and n ! i, and thus V " n ! u. Since
the flow is symmetric, the differential area can be taken as a circular strip dA ! 2 .r dr. Equa-
tion (3.32) becomes

Vav ! "
A
1

" ! u dA ! "
.

1
R2" !R

0
U0"1 & "

R
r
"#

m
2.r dr

or Vav ! U0 "(1 + m)
2
(2 + m)
" Ans.

For the laminar-flow approximation, m & "12" and Vav & 0.53U0. (The exact laminar theory in Chap.
6 gives Vav ! 0.50U0.) For turbulent flow, m & "17" and Vav & 0.82U0. (There is no exact turbu-
lent theory, and so we accept this approximation.) The turbulent velocity profile is more uniform
across the section, and thus the average velocity is only slightly less than maximum.

EXAMPLE 3.5

Consider the constant-density velocity field

u ! "
V
L
0x
" / ! 0 w ! & "

V
L
0z
"

similar to Example 1.10. Use the triangular control volume in Fig. E3.5, bounded by (0, 0),
(L, L), and (0, L), with depth b into the paper. Compute the volume flow through sections 1, 2,
and 3, and compare to see whether mass is conserved.

Solution

The velocity field everywhere has the form V ! iu + kw. This must be evaluated along each
section. We save section 2 until last because it looks tricky. Section 1 is the plane z ! L with
depth b. The unit outward normal is n ! k, as shown. The differential area is a strip of depth b
varying with x: dA ! b dx. The normal velocity is

(V " n)1 ! (iu + kw) " k ! w|1 ! & "
V
L
0z
"⏐z!L

! & V0

The volume flow through section 1 is thus, from Eq. (3.31),

Q1 ! !0

1
(V " n) dA ! !L

0 
(& V0)b dx ! & V0bL Ans. 1
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n = k

(L, L)L

z

n = – i

0
0

x
n = ?

3

1

2

CV

Depth b into paper

r

r = R

x

u(r)

U0

u = 0 (no slip)
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Since this is negative, section 1 is a net inflow. Check the units: V0bL is a velocity times an 
area; OK.

Section 3 is the plane x ! 0 with depth b. The unit normal is n ! & i, as shown, and 
dA ! b dz. The normal velocity is

(V " n)3 ! (iu + kw) * (& i) ! & u|3 ! & "
V
L
0x
"⏐s!0

! 0 Ans. 3

Thus Vn $ 0 all along section 3; hence Q3 ! 0.
Finally, section 2 is the plane x ! z with depth b. The normal direction is to the right i and

down & k but must have unit value; thus n ! (1/'2()(i & k). The differential area is either dA !
'2(b dx or dA ! '2(b dz. The normal velocity is

(V " n)2 ! (iu + kw) " "
'
1
2(

" (i & k) ! "
'
1
2(

" (u & w)2

! "
'
1
2(

" )V0 "
L
x

" & "& V0 "
L
z
"#*x!z

! "
'2(

L
V0x
" or "

'2(
L
V0z
"

Then the volume flow through section 2 is

Q2 ! !0

2
(V " n) dA ! !L

0
"
'2(

L
V0x
" ('2(b dx) ! V0bL Ans. 2

This answer is positive, indicating an outflow. These are the desired results. We should note that
the volume flow is zero through the front and back triangular faces of the prismatic control vol-
ume because Vn ! / ! 0 on those faces.

The sum of the three volume flows is

Q1 + Q2 + Q3 ! & V0bL + V0bL + 0 ! 0

Mass is conserved in this constant-density flow, and there are no net sources or sinks within the
control volume. This is a very realistic flow, as described in Example 1.10

EXAMPLE 3.6

The tank in Fig. E3.6 is being filled with water by two one-dimensional inlets. Air is trapped at
the top of the tank. The water height is h. (a) Find an expression for the change in water height
dh/dt. (b) Compute dh/dt if D1 ! 1 in, D2 ! 3 in, V1 ! 3 ft/s, V2 ! 2 ft/s, and At ! 2 ft2, as-
suming water at 20°C.

Solution

A suggested control volume encircles the tank and cuts through the two inlets. The flow within
is unsteady, and Eq. (3.22) applies with no outlets and two inlets:

"
d
d
t
" "!

0

CV
( d!# & (1A1V1 & (2A2V2 ! 0 (1)

Now if At is the tank cross-sectional area, the unsteady term can be evaluated as follows:

"
d
d
t
" "!

0

CV
( d!# ! "

d
d
t
" ((wAth) + "

d
d
t
" [(aAt(H & h)] ! (wAt "

d
d
h
t
" (2)
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1
2

Tank area At

a

w
H

h

Fixed CS

ρ

ρ

Part (a)



Part (b)

3.4 The Linear Momentum
Equation

The (a term vanishes because it is the rate of change of air mass and is zero because the air is
trapped at the top. Substituting (2) into (1), we find the change of water height

"
d
d
h
t
" !"

(1A1V1

(

+

wA
(

t

2A2V2" Ans. (a)

For water, (1 ! (2 ! (w, and this result reduces to

"
d
d
h
t
" ! "

A1V1 +
At

A2V2" ! "
Q1 +

At

Q2" (3)

The two inlet volume flows are

Q1 ! A1V1 ! "14".("1
1
2" ft)2(3 ft/s) ! 0.016 ft3/s

Q2 ! A2V2 ! "14".("1
3
2" ft)2(2 ft/s) ! 0.098 ft3/s

Then, from Eq. (3),

"
d
d
h
t
" ! ! 0.057 ft/s Ans. (b)

Suggestion: Repeat this problem with the top of the tank open.

An illustration of a mass balance with a deforming control volume has already been
given in Example 3.2.

The control-volume mass relations, Eq. (3.20) or (3.21), are fundamental to all fluid-
flow analyses. They involve only velocity and density. Vector directions are of no con-
sequence except to determine the normal velocity at the surface and hence whether the
flow is in or out. Although your specific analysis may concern forces or moments or
energy, you must always make sure that mass is balanced as part of the analysis; oth-
erwise the results will be unrealistic and probably rotten. We shall see in the examples
which follow how mass conservation is constantly checked in performing an analysis
of other fluid properties.

In Newton’s law, Eq. (3.2), the property being differentiated is the linear momentum
mV. Therefore our dummy variable is B ! mV and % ! dB/dm ! V, and application
of the Reynolds transport theorem gives the linear-momentum relation for a deformable
control volume

"
d
d
t
" (mV)syst ! % F ! "

d
d
t
" "!CV

V( d!# + !
CS

V((Vr " n) dA (3.35)

The following points concerning this relation should be strongly emphasized:

1. The term V is the fluid velocity relative to an inertial (nonaccelerating) coordi-
nate system; otherwise Newton’s law must be modified to include noninertial
relative-acceleration terms (see the end of this section).

2. The term # F is the vector sum of all forces acting on the control-volume mate-
rial considered as a free body; i.e., it includes surface forces on all fluids and

(0.016 + 0.098) ft3/s
"""

2 ft2
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One-Dimensional Momentum
Flux

Net Pressure Force on a Closed
Control Surface

solids cut by the control surface plus all body forces (gravity and electromag-
netic) acting on the masses within the control volume.

3. The entire equation is a vector relation; both the integrals are vectors due to the
term V in the integrands. The equation thus has three components. If we want
only, say, the x component, the equation reduces to

% Fx ! "
d
d
t
" "!CV

u( d!# + !
CS

u((Vr " n) dA (3.36)

and similarly, # Fy and # Fz would involve v and w, respectively. Failure to ac-
count for the vector nature of the linear-momentum relation (3.35) is probably the
greatest source of student error in control-volume analyses.

For a fixed control volume, the relative velocity Vr $ V, and

% F ! "
d
d
t
" "!CV

V( d!# + !
CS

V((V " n) dA (3.37)

Again we stress that this is a vector relation and that V must be an inertial-frame ve-
locity. Most of the momentum analyses in this text are concerned with Eq. (3.37).

By analogy with the term mass flow used in Eq. (3.28), the surface integral in Eq.
(3.37) is called the momentum-flux term. If we denote momentum by M, then

Ṁ CS ! !0

sec
V((V " n) dA (3.38)

Because of the dot product, the result will be negative for inlet momentum flux and
positive for outlet flux. If the cross section is one-dimensional, V and ( are uniform
over the area and the integrated result is

Ṁ seci ! Vi((iVniAi) ! ṁ iVi (3.39)

for outlet flux and & ṁ iVi for inlet flux. Thus if the control volume has only one-
dimensional inlets and outlets, Eq. (3.37) reduces to

%F ! "
d
d
t
" "!CV

V( d!# + %(ṁiVi)out & %(ṁ iVi)in (3.40)

This is a commonly used approximation in engineering analyses. It is crucial to real-
ize that we are dealing with vector sums. Equation (3.40) states that the net vector force
on a fixed control volume equals the rate of change of vector momentum within the
control volume plus the vector sum of outlet momentum fluxes minus the vector sum
of inlet fluxes.

Generally speaking, the surface forces on a control volume are due to (1) forces ex-
posed by cutting through solid bodies which protrude through the surface and (2) forces
due to pressure and viscous stresses of the surrounding fluid. The computation of pres-
sure force is relatively simple, as shown in Fig. 3.7. Recall from Chap. 2 that the ex-
ternal pressure force on a surface is normal to the surface and inward. Since the unit
vector n is defined as outward, one way to write the pressure force is

Fpress ! !
CS

p(& n) dA (3.41)
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Fig. 3.7 Pressure-force computation
by subtracting a uniform distribu-
tion: (a) uniform pressure, F !

& pa !n dA $ 0; (b) nonuniform 

pressure, F ! &!(p& pa)n dA.

Now if the pressure has a uniform value pa all around the surface, as in Fig. 3.7a, the
net pressure force is zero

FUP !! pa(& n) dA ! & pa ! n dA $ 0 (3.42)

where the subscript UP stands for uniform pressure. This result is independent of the 
shape of the surface8 as long as the surface is closed and all our control volumes are 
closed. Thus a seemingly complicated pressure-force problem can be simplified by sub-
tracting any convenient uniform pressure pa and working only with the pieces of gage
pressure which remain, as illustrated in Fig. 3.7b. Thus Eq. (3.41) is entirely equiva-
lent to

Fpress ! !
CS 

( p& pa)(& n) dA !!
CS

pgage(& n) dA

This trick can mean quite a saving in computation.

EXAMPLE 3.7

A control volume of a nozzle section has surface pressures of 40 lbf/in2absolute at section 1 and
atmospheric pressure of 15 lbf/in2absolute at section 2 and on the external rounded part of the
nozzle, as in Fig. E3.7a. Compute the net pressure force if D1 ! 3 in and D2 ! 1 in.

Solution

We do not have to bother with the outer surface if we subtract 15 lbf/in2 from all surfaces.
This leaves 25 lbf/in2gage at section 1 and 0 lbf/in2 gage everywhere else, as in Fig. E3.7b.
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Closed
CS

pa

n

pa

pa

pa

pgage =  p –  pa

Closed
CS pgage =  0

pgage

pgage

pa

(a) (b)

n

pa

8Can you prove this? It is a consequence of Gauss’ theorem from vector analysis.
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Then the net pressure force is computed from section 1 only

F ! pg1(& n)1A1 ! (25 lbf/in2) "
.
4

" (3 in)2i ! 177i lbf Ans.

Notice that we did not change inches to feet in this case because, with pressure in pounds-force
per square inch and area in square inches, the product gives force directly in pounds. More of-
ten, though, the change back to standard units is necessary and desirable. Note: This problem
computes pressure force only. There are probably other forces involved in Fig. E3.7, e.g.,
nozzle-wall stresses in the cuts through sections 1 and 2 and the weight of the fluid within the
control volume.

Figure E3.7 illustrates a pressure boundary condition commonly used for jet exit-flow
problems. When a fluid flow leaves a confined internal duct and exits into an ambient
“atmosphere,” its free surface is exposed to that atmosphere. Therefore the jet itself
will essentially be at atmospheric pressure also. This condition was used at section 2
in Fig. E3.7.

Only two effects could maintain a pressure difference between the atmosphere and
a free exit jet. The first is surface tension, Eq. (1.31), which is usually negligible. The
second effect is a supersonic jet, which can separate itself from an atmosphere with
expansion or compression waves (Chap. 9). For the majority of applications, therefore,
we shall set the pressure in an exit jet as atmospheric.

EXAMPLE 3.8

A fixed control volume of a streamtube in steady flow has a uniform inlet flow ((1, A1, V1) and
a uniform exit flow ((2, A2, V2), as shown in Fig. 3.8. Find an expression for the net force on
the control volume.

Solution

Equation (3.40) applies with one inlet and exit

%F ! ṁ2V2 & ṁ1V1 ! ((2A2V2)V2 & ((1A1V1)V1
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Pressure Condition at a Jet Exit



Fig. 3.8 Net force on a one-dimen-
sional streamtube in steady flow:
(a) streamtube in steady flow; (b)
vector diagram for computing net
force.

Fig. 3.9 Net applied force on a
fixed jet-turning vane: (a) geometry
of the vane turning the water jet;
(b) vector diagram for the net
force.

The volume-integral term vanishes for steady flow, but from conservation of mass in Example
3.3 we saw that

ṁ1 ! ṁ2 ! ṁ ! const
Therefore a simple form for the desired result is

%F ! ṁ (V2 & V1) Ans.

This is a vector relation and is sketched in Fig. 3.8b. The term # F represents the net force act-
ing on the control volume due to all causes; it is needed to balance the change in momentum of
the fluid as it turns and decelerates while passing through the control volume.

EXAMPLE 3.9

As shown in Fig. 3.9a, a fixed vane turns a water jet of area A through an angle ) without chang-
ing its velocity magnitude. The flow is steady, pressure is pa everywhere, and friction on the
vane is negligible. (a) Find the components Fx and Fy of the applied vane force. (b) Find ex-
pressions for the force magnitude F and the angle 0 between F and the horizontal; plot them
versus ).

Solution

The control volume selected in Fig. 3.9a cuts through the inlet and exit of the jet and through
the vane support, exposing the vane force F. Since there is no cut along the vane-jet interface,
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Part (b)

vane friction is internally self-canceling. The pressure force is zero in the uniform atmosphere.
We neglect the weight of fluid and the vane weight within the control volume. Then Eq. (3.40)
reduces to

Fvane ! ṁ2V2 & ṁ1V1

But the magnitude V1 ! V2 ! V as given, and conservation of mass for the streamtube requires
ṁ1 ! ṁ2 ! ṁ ! (AV. The vector diagram for force and momentum change becomes an isosce-
les triangle with legs ṁV and base F, as in Fig. 3.9b. We can readily find the force components
from this diagram

Fx ! ṁV(cos ) & 1) Fy ! ṁV sin ) Ans. (a)

where ṁV ! (AV2 for this case. This is the desired result.
The force magnitude is obtained from part (a):

F ! (Fx
2+ Fy

2)1/2! ṁV[sin2) + (cos ) & 1)2]1/2! 2ṁV sin "
)
2

" Ans. (b)

From the geometry of Fig. 3.9b we obtain

0 ! 180° & tan& 1"
F
F

y

x
" ! 90° + "

)
2

" Ans. (b)
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These can be plotted versus ) as shown in Fig. E3.9. Two special cases are of interest. First, the
maximum force occurs at ) ! 180°, that is, when the jet is turned around and thrown back in
the opposite direction with its momentum completely reversed. This force is 2ṁV and acts to the
left; that is, 0 ! 180°. Second, at very small turning angles () 1 10°) we obtain approximately

F & ṁV) 0 & 90°

The force is linearly proportional to the turning angle and acts nearly normal to the jet. This is
the principle of a lifting vane, or airfoil, which causes a slight change in the oncoming flow di-
rection and thereby creates a lift force normal to the basic flow.

EXAMPLE 3.10

A water jet of velocity Vj impinges normal to a flat plate which moves to the right at velocity
Vc, as shown in Fig. 3.10a. Find the force required to keep the plate moving at constant veloc-
ity if the jet density is 1000 kg/m3, the jet area is 3 cm2, and Vj and Vc are 20 and 15 m/s, re-



Fig. 3.10 Force on a plate moving
at constant velocity: (a) jet striking
a moving plate normally; (b) con-
trol volume fixed relative to the
plate.

spectively. Neglect the weight of the jet and plate, and assume steady flow with respect to the
moving plate with the jet splitting into an equal upward and downward half-jet.

Solution

The suggested control volume in Fig. 3.10a cuts through the plate support to expose the desired
forces Rx and Ry. This control volume moves at speed Vc and thus is fixed relative to the plate,
as in Fig. 3.10b. We must satisfy both mass and momentum conservation for the assumed steady-
flow pattern in Fig. 3.10b. There are two outlets and one inlet, and Eq. (3.30) applies for mass
conservation

ṁout ! ṁin

or (1A1V1 + (2A2V2 ! (jAj(Vj & Vc) (1)

We assume that the water is incompressible (1 ! (2 ! (j, and we are given that A1 ! A2 ! "12"Aj.
Therefore Eq. (1) reduces to

V1 + V2 ! 2(Vj & Vc) (2)

Strictly speaking, this is all that mass conservation tells us. However, from the symmetry of the
jet deflection and the neglect of fluid weight, we conclude that the two velocities V1 and V2 must
be equal, and hence (2) becomes

V1 ! V2 ! Vj & Vc (3)

For the given numerical values, we have

V1 ! V2 ! 20 & 15 ! 5 m/s

Now we can compute Rx and Ry from the two components of momentum conservation. Equa-
tion (3.40) applies with the unsteady term zero

% Fx ! Rx ! ṁ1u1 + ṁ2u2 & ṁjuj (4)

where from the mass analysis, ṁ1 ! ṁ2 ! "12"ṁj ! "12"(jAj(Vj & Vc). Now check the flow directions
at each section: u1 ! u2 ! 0, and uj ! Vj & Vc ! 5 m/s. Thus Eq. (4) becomes

Rx ! & ṁjuj ! & [(jAj(Vj & Vc)](Vj & Vc) (5)
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Fig. 3.11 Control-volume analysis
of drag force on a flat plate due to
boundary shear.

For the given numerical values we have

Rx ! & (1000 kg/m3)(0.0003 m2)(5 m/s)2! & 7.5 (kg * m)/s2! & 7.5 N Ans.

This acts to the left; i.e., it requires a restraining force to keep the plate from accelerating to the
right due to the continuous impact of the jet. The vertical force is

Fy ! Ry ! ṁ1/1 + ṁ2/2 & ṁj/j

Check directions again: /1 ! V1, /2 ! & V2, /j ! 0. Thus

Ry ! ṁ1(V1) + ṁ2(& V2) ! "12"ṁj(V1 & V2) (6)

But since we found earlier that V1 ! V2, this means that Ry ! 0, as we could expect from the
symmetry of the jet deflection.9 Two other results are of interest. First, the relative velocity at
section 1 was found to be 5 m/s up, from Eq. (3). If we convert this to absolute motion by adding
on the control-volume speed Vc ! 15 m/s to the right, we find that the absolute velocity V1 !
15i + 5j m/s, or 15.8 m/s at an angle of 18.4° upward, as indicated in Fig. 3.10a. Thus the ab-
solute jet speed changes after hitting the plate. Second, the computed force Rx does not change
if we assume the jet deflects in all radial directions along the plate surface rather than just up
and down. Since the plate is normal to the x axis, there would still be zero outlet x-momentum
flux when Eq. (4) was rewritten for a radial-deflection condition.

EXAMPLE 3.11

The previous example treated a plate at normal incidence to an oncoming flow. In Fig. 3.11 the
plate is parallel to the flow. The stream is not a jet but a broad river, or free stream, of uniform
velocity V ! U0i. The pressure is assumed uniform, and so it has no net force on the plate. The
plate does not block the flow as in Fig. 3.10, so that the only effect is due to boundary shear,
which was neglected in the previous example. The no-slip condition at the wall brings the fluid
there to a halt, and these slowly moving particles retard their neighbors above, so that at the end
of the plate there is a significant retarded shear layer, or boundary layer, of thickness y ! $. The

3.4 The Linear Momentum Equation 153

9Symmetry can be a powerful tool if used properly. Try to learn more about the uses and misuses of
symmetry conditions. Here we doggedly computed the results without invoking symmetry.
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viscous stresses along the wall can sum to a finite drag force on the plate. These effects are il-
lustrated in Fig. 3.11. The problem is to make an integral analysis and find the drag force D in
terms of the flow properties (, U0, and $ and the plate dimensions L and b.†

Solution

Like most practical cases, this problem requires a combined mass and momentum balance. A
proper selection of control volume is essential, and we select the four-sided region from 0 to h
to $ to L and back to the origin 0, as shown in Fig. 3.11. Had we chosen to cut across horizon-
tally from left to right along the height y ! h, we would have cut through the shear layer and
exposed unknown shear stresses. Instead we follow the streamline passing through (x, y) !
(0, h), which is outside the shear layer and also has no mass flow across it. The four control-
volume sides are thus

1. From (0, 0) to (0, h): a one-dimensional inlet, V " n ! & U0

2. From (0, h) to (L, $): a streamline, no shear, V " n $ 0

3. From (L, $) to (L, 0): a two-dimensional outlet, V " n ! + u(y)

4. From (L, 0) to (0, 0): a streamline just above the plate surface, V " n ! 0, shear forces
summing to the drag force & Di acting from the plate onto the retarded fluid

The pressure is uniform, and so there is no net pressure force. Since the flow is assumed in-
compressible and steady, Eq. (3.37) applies with no unsteady term and fluxes only across sec-
tions 1 and 3:

% Fx ! & D ! ( !0

1
u(V " n) dA + (!0

3
u(V " n) dA

! ( !h

0
U0(& U0)b dy + (!$

0
u(+ u)b dy

Evaluating the first integral and rearranging give

D ! (U0
2bh & (b!$

0
u2dy (1)

This could be considered the answer to the problem, but it is not useful because the height h is
not known with respect to the shear-layer thickness $. This is found by applying mass conser-
vation, since the control volume forms a streamtube

( !0

CS
(V " n) dA ! 0 ! (!h

0
(& U0)b dy + (!$

0
ub dy

or U0h !!$

0
u dy (2)

after canceling b and ( and evaluating the first integral. Introduce this value of h into Eq. (1) for
a much cleaner result

D ! (b!$

0
u(U0 & u) dy⏐x!L

Ans. (3)

This result was first derived by Theodore von Kármán in 1921.10 It relates the friction drag on

154 Chapter 3 Integral Relations for a Control Volume

†The general analysis of such wall-shear problems, called boundary-layer theory, is treated in Sec. 7.3.
10The autobiography of this great twentieth-century engineer and teacher [2] is recommended for its

historical and scientific insight.



Momentum-Flux Correction
Factor

one side of a flat plate to the integral of the momentum defect u(U0 & u) across the trailing cross
section of the flow past the plate. Since U0 & u vanishes as y increases, the integral has a finite
value. Equation (3) is an example of momentum-integral theory for boundary layers, which is
treated in Chap. 7. To illustrate the magnitude of this drag force, we can use a simple parabolic
approximation for the outlet-velocity profile u(y) which simulates low-speed, or laminar, shear
flow

u & U0 ""
2
$
y
" & "

$
y2

2"# for 0 2 y 2 $ (4)

Substituting into Eq. (3) and letting 3 ! y/$ for convenience, we obtain

D ! (bU0
2$ !1

0
(23 & 32)(1 & 23 + 32) d3 ! "1

2
5"(U0

2b$ (5)

This is within 1 percent of the accepted result from laminar boundary-layer theory (Chap. 7) in
spite of the crudeness of the Eq. (4) approximation. This is a happy situation and has led to the
wide use of Kármán’s integral theory in the analysis of viscous flows. Note that D increases with
the shear-layer thickness $, which itself increases with plate length and the viscosity of the fluid
(see Sec. 7.4).

For flow in a duct, the axial velocity is usually nonuniform, as in Example 3.4. For

this case the simple momentum-flux calculation !u((V " n) dA ! ṁ V ! (AV2 is some-

what in error and should be corrected to ,(AV2, where , is the dimensionless 
momentum-flux correction factor, , ' 1.

The factor , accounts for the variation of u2across the duct section. That is, we com-
pute the exact flux and set it equal to a flux based on average velocity in the duct

(! u2dA ! ,ṁ Vav ! ,(AVav
2

or , ! "
A
1

"! ""
V
u

av
"#

2
dA (3.43a)

Values of , can be computed based on typical duct velocity profiles similar to those
in Example 3.4. The results are as follows:

Laminar flow: u ! U0"1 & "
R
r2

2"# , ! "
4
3

" (3.43b)

Turbulent flow: u & U0"1 & "
R
r
"#

m
"
1
9

" 2 m 2 "
1
5

"

, ! (3.43c)

The turbulent correction factors have the following range of values:

Turbulent flow:

(1 + m)2(2 + m)2

"""
2(1 + 2m)(2 + 2m)
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m "15" "16" "17" "18" "19"

, 1.037 1.027 1.020 1.016 1.013



Noninertial Reference Frame11

These are so close to unity that they are normally neglected. The laminar correction
may sometimes be important.

To illustrate a typical use of these correction factors, the solution to Example 3.8
for nonuniform velocities at sections 1 and 2 would be given as

% F ! ṁ (,2V2 & ,1V1) (3.43d )

Note that the basic parameters and vector character of the result are not changed at all
by this correction.

All previous derivations and examples in this section have assumed that the coordinate
system is inertial, i.e., at rest or moving at constant velocity. In this case the rate of
change of velocity equals the absolute acceleration of the system, and Newton’s law
applies directly in the form of Eqs. (3.2) and (3.35).

In many cases it is convenient to use a noninertial, or accelerating, coordinate sys-
tem. An example would be coordinates fixed to a rocket during takeoff. A second ex-
ample is any flow on the earth’s surface, which is accelerating relative to the fixed stars
because of the rotation of the earth. Atmospheric and oceanographic flows experience
the so-called Coriolis acceleration, outlined below. It is typically less than 10& 5g, where
g is the acceleration of gravity, but its accumulated effect over distances of many kilo-
meters can be dominant in geophysical flows. By contrast, the Coriolis acceleration is
negligible in small-scale problems like pipe or airfoil flows.

Suppose that the fluid flow has velocity V relative to a noninertial xyz coordinate
system, as shown in Fig. 3.12. Then dV/dt will represent a noninertial acceleration
which must be added vectorially to a relative acceleration arel to give the absolute ac-
celeration ai relative to some inertial coordinate system XYZ, as in Fig. 3.12. Thus

ai ! "
d
d
V
t
" + arel (3.44)
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11This section may be omitted without loss of continuity.
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Since Newton’s law applies to the absolute acceleration,

% F ! mai ! m""
d
d
V
t
" + arel#

or % F & marel ! m "
d
d
V
t
" (3.45)

Thus Newton’s law in noninertial coordinates xyz is equivalent to adding more “force”
terms & marel to account for noninertial effects. In the most general case, sketched in
Fig. 3.12, the term arel contains four parts, three of which account for the angular ve-
locity &(t) of the inertial coordinates. By inspection of Fig. 3.12, the absolute dis-
placement of a particle is

Si ! r + R (3.46)

Differentiation gives the absolute velocity

Vi ! V + "
d
d
R
t
" + & ! r (3.47)

A second differentiation gives the absolute acceleration:

ai ! "
d
d
V
t
" + "

d
d

2

t
R
2" + "

d
d
&
t
" ! r + 2& ! V + & ! (& ! r) (3.48)

By comparison with Eq. (3.44), we see that the last four terms on the right represent
the additional relative acceleration:

1. d2R/dt2is the acceleration of the noninertial origin of coordinates xyz.
2. (d&/dt) ! r is the angular-acceleration effect.
3. 2& ! V is the Coriolis acceleration.
4. & ! (& ! r) is the centripetal acceleration, directed from the particle normal to

the axis of rotation with magnitude 42L, where L is the normal distance to the
axis.12

Equation (3.45) differs from Eq. (3.2) only in the added inertial forces on the left-
hand side. Thus the control-volume formulation of linear momentum in noninertial co-
ordinates merely adds inertial terms by integrating the added relative acceleration over
each differential mass in the control volume

% F &!0

CV
arel dm ! "

d
d
t
" "!

0

CV 
V( d!# + !0

CS
V((Vr " n) dA (3.49)

where arel ! "
d
d

2

t
R
2" + "

d
d
&
t
" ! r + 2& ! V + & ! (& ! r)

This is the noninertial equivalent to the inertial form given in Eq. (3.35). To analyze
such problems, one must have knowledge of the displacement R and angular velocity
& of the noninertial coordinates.

If the control volume is nondeformable, Eq. (3.49) reduces to
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12A complete discussion of these noninertial coordinate terms is given, e.g., in Ref. 4, pp. 49 – 51.



E3.12 

% F &!0

CV
arel dm ! "

d
d
t
" "!

0

CV
V( d!# + !

CS
V((V " n) dA (3.50)

In other words, the right-hand side reduces to that of Eq. (3.37).

EXAMPLE 3.12

A classic example of an accelerating control volume is a rocket moving straight up, as in Fig.
E3.12. Let the initial mass be M0, and assume a steady exhaust mass flow ṁ and exhaust ve-
locity Ve relative to the rocket, as shown. If the flow pattern within the rocket motor is steady
and air drag is neglected, derive the differential equation of vertical rocket motion V(t) and in-
tegrate using the initial condition V ! 0 at t ! 0.

Solution

The appropriate control volume in Fig. E3.12 encloses the rocket, cuts through the exit jet, and
accelerates upward at rocket speed V(t). The z-momentum equation (3.49) becomes

% Fz & ! arel dm ! "
d
d
t
" "!CV

w dṁ# + (ṁw)e

or & mg & m "
d
d
V
t
" ! 0 + ṁ Ve with m ! m(t) ! M0 & ṁt

The term arel ! dV/dt of the rocket. The control volume integral vanishes because of the steady
rocket-flow conditions. Separate the variables and integrate, assuming V ! 0 at t ! 0:

!V

0
dV ! ṁ Ve !t

0
"
M0

d
&
t

ṁt
" & g !t

0
dt or V(t) ! & Veln "1 & "

M
ṁ

0

t
"# & gt Ans.

This is a classic approximate formula in rocket dynamics. The first term is positive and, if the
fuel mass burned is a large fraction of initial mass, the final rocket velocity can exceed Ve.

A control-volume analysis can be applied to the angular-momentum relation, Eq. (3.3),
by letting our dummy variable B be the angular-momentum vector H. However, since
the system considered here is typically a group of nonrigid fluid particles of variable ve-
locity, the concept of mass moment of inertia is of no help and we have to calculate the
instantaneous angular momentum by integration over the elemental masses dm. If O is
the point about which moments are desired, the angular momentum about O is given by

HO !!
syst

(r ! V) dm (3.51)

where r is the position vector from 0 to the elemental mass dm and V is the velocity
of that element. The amount of angular momentum per unit mass is thus seen to be

% ! "
d
d
H
m

O" ! r ! V
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The Reynolds transport theorem (3.16) then tells us that

"
dH

dt
O"⏐syst

! "
d
d
t
" )!CV

(r ! V)( d!*+ !
CS

(r ! V)((Vr " n) dA (3.52)

for the most general case of a deformable control volume. But from the angular-
momentum theorem (3.3), this must equal the sum of all the moments about point O
applied to the control volume

"
dH

dt
O" ! % MO ! % (r ! F)O

Note that the total moment equals the summation of moments of all applied forces
about point O. Recall, however, that this law, like Newton’s law (3.2), assumes that the
particle velocity V is relative to an inertial coordinate system. If not, the moments
about point O of the relative acceleration terms arel in Eq. (3.49) must also be included

% MO ! % (r ! F)O &!
CV

(r ! arel) dm (3.53)

where the four terms constituting arel are given in Eq. (3.49). Thus the most general
case of the angular-momentum theorem is for a deformable control volume associated
with a noninertial coordinate system. We combine Eqs. (3.52) and (3.53) to obtain

% (r ! F)0 &!
CV

(r ! arel) dm ! "
d
d
t
" )!CV

(r ! V)( d!*+ !
CS

(r ! V)((Vr " n) dA

(3.54)

For a nondeformable inertial control volume, this reduces to

% M0 ! "
-
-
t
" )!CV

(r ! V)( d!*+ !
CS

(r ! V)((V " n) dA (3.55)

Further, if there are only one-dimensional inlets and exits, the angular-momentum flux
terms evaluated on the control surface become

!
CS

(r ! V)((V " n) dA ! % (r ! V)out ṁout & % (r ! V)in ṁin (3.56)

Although at this stage the angular-momentum theorem can be considered to be a sup-
plementary topic, it has direct application to many important fluid-flow problems in-
volving torques or moments. A particularly important case is the analysis of rotating
fluid-flow devices, usually called turbomachines (Chap. 11).

EXAMPLE 3.13

As shown in Fig. E3.13a, a pipe bend is supported at point A and connected to a flow system
by flexible couplings at sections 1 and 2. The fluid is incompressible, and ambient pressure pa

is zero. (a) Find an expression for the torque T which must be resisted by the support at A, in
terms of the flow properties at sections 1 and 2 and the distances h1 and h2. (b) Compute this
torque if D1 ! D2 ! 3 in, p1 ! 100 lbf/in2 gage, p2 ! 80 lbf/in2 gage, V1 ! 40 ft/s, h1 ! 2 in,
h2 ! 10 in, and ( ! 1.94 slugs/ft3.
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E3.13a

Solution

The control volume chosen in Fig. E3.13b cuts through sections 1 and 2 and through the sup-
port at A, where the torque TA is desired. The flexible-couplings description specifies that there
is no torque at either section 1 or 2, and so the cuts there expose no moments. For the angular-
momentum terms r ! V, r should be taken from point A to sections 1 and 2. Note that the gage
pressure forces p1A1 and p2A2 both have moments about A. Equation (3.55) with one-dimen-
sional flux terms becomes

% MA ! TA + r1 ! (& p1A1n1) + r2 ! (& p2A2n2)

! (r2 ! V2)(+ ṁout) + (r1 ! V1)(& ṁin) (1)

Figure E3.13c shows that all the cross products are associated either with r1 sin )1 ! h1 or 
r2 sin )2 ! h2, the perpendicular distances from point A to the pipe axes at 1 and 2. Remember
that ṁin ! ṁout from the steady-flow continuity relation. In terms of counterclockwise moments,
Eq. (1) then becomes

TA + p1A1h1 & p2A2h2 ! ṁ (h2V2 & h1V1) (2)

Rewriting this, we find the desired torque to be

TA ! h2(p2A2 + ṁ V2) & h1(p1A1 + ṁ V1) Ans. (a) (3)
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Part (b)

counterclockwise. The quantities p1 and p2 are gage pressures. Note that this result is indepen-
dent of the shape of the pipe bend and varies only with the properties at sections 1 and 2 and
the distances h1 and h2.†

The inlet and exit areas are the same:

A1 ! A2 ! "
.
4

" (3)2! 7.07 in2! 0.0491 ft2

Since the density is constant, we conclude from continuity that V2 ! V1 ! 40 ft /s. The mass
flow is

ṁ! (A1V1 ! 1.94(0.0491)(40) ! 3.81 slug/s

Equation (3) can be evaluated as

TA ! ("11
0
2" ft)[80(7.07) lbf + 3.81(40) lbf] & ("1

2
2" ft)[100(7.07) lbf + 3.81(40) lbf]

! 598 & 143 ! 455 ft * lbf counterclockwise Ans. (b)

We got a little daring there and multiplied p in lbf/in2 gage times A in in2 to get lbf without
changing units to lbf/ft2 and ft2.

EXAMPLE 3.14

Figure 3.13 shows a schematic of a centrifugal pump. The fluid enters axially and passes through
the pump blades, which rotate at angular velocity %; the velocity of the fluid is changed from
V1 to V2 and its pressure from p1 to p2. (a) Find an expression for the torque TO which must be
applied to these blades to maintain this flow. (b) The power supplied to the pump would be P !
%TO. To illustrate numerically, suppose r1 ! 0.2 m, r2 ! 0.5 m, and b ! 0.15 m. Let the pump
rotate at 600 r/min and deliver water at 2.5 m3/s with a density of 1000 kg/m3. Compute the ide-
alized torque and power supplied.

Solution

The control volume is chosen to be the angular region between sections 1 and 2 where the flow
passes through the pump blades (see Fig. 3.13). The flow is steady and assumed incompress-
ible. The contribution of pressure to the torque about axis O is zero since the pressure forces at
1 and 2 act radially through O. Equation (3.55) becomes

% MO ! TO ! (r2 ! V2)ṁout & (r1 ! V1)ṁin (1)

where steady-flow continuity tells us that

ṁin ! (Vn12.r1b ! ṁout ! (Vn2.r2b ! (Q

The cross product r ! V is found to be clockwise about O at both sections:

r2 ! V2 ! r2Vt2 sin 90° k ! r2Vt2k clockwise

r1 ! V1 ! r1Vt1k clockwise

Equation (1) thus becomes the desired formula for torque

TO ! (Q(r2Vt2 & r1Vt1)k clockwise Ans. (a) (2a)
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Fig. 3.13 Schematic of a simplified
centrifugal pump.

This relation is called Euler’s turbine formula. In an idealized pump, the inlet and outlet tan-
gential velocities would match the blade rotational speeds Vt1 ! %r1 and Vt2 ! %r2. Then the
formula for torque supplied becomes

TO ! (Q%(r2
2& r1

2) clockwise (2b)

Convert % to 600(2./60) ! 62.8 rad/s. The normal velocities are not needed here but follow
from the flow rate

Vn1 ! "
2.

Q
r1b
" !"

2.(0.
2
2
.5
m

m
)(

3

0
/
.
s
15 m)

"! 13.3 m/s

Vn2 ! "
2.

Q
r2b
" ! "

2.(0.
2
5
.
)
5
(0.15)
" ! 5.3 m/s

For the idealized inlet and outlet, tangential velocity equals tip speed

Vt1 ! %r1 ! (62.8 rad/s)(0.2 m) ! 12.6 m/s

Vt2 ! %r2 ! 62.8(0.5) ! 31.4 m/s

Equation (2a) predicts the required torque to be

TO ! (1000 kg/m3)(2.5 m3/s)[(0.5 m)(31.4 m/s) & (0.2 m)(12.6 m/s)]

! 33,000 (kg * m2)/s2! 33,000 N * m Ans.

The power required is

P ! %TO ! (62.8 rad/s)(33,000 N * m) ! 2,070,000 (N * m)/s

! 2.07 MW (2780 hp) Ans.

In actual practice the tangential velocities are considerably less than the impeller-tip speeds, and
the design power requirements for this pump may be only 1 MW or less.
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Fig. 3.14 View from above of a
single arm of a rotating lawn 
sprinkler.

EXAMPLE 3.15

Figure 3.14 shows a lawn-sprinkler arm viewed from above. The arm rotates about O at con-
stant angular velocity %. The volume flux entering the arm at O is Q, and the fluid is incom-
pressible. There is a retarding torque at O, due to bearing friction, of amount & TOk. Find an ex-
pression for the rotation % in terms of the arm and flow properties.

Solution

The entering velocity is V0k, where V0 ! Q/Apipe. Equation (3.55) applies to the control volume
sketched in Fig. 3.14 only if V is the absolute velocity relative to an inertial frame. Thus the exit
velocity at section 2 is

V2 ! V0i & R%i

Equation (3.55) then predicts that, for steady flow,

% MO ! & TOk ! (r2 ! V2)ṁout & (r1 ! V1)ṁin (1)

where, from continuity, ṁout ! ṁin ! (Q. The cross products with reference to point O are

r2 ! V2 ! Rj ! (V0 & R%)i ! (R2% & RV0)k

r1 ! V1 ! 0j ! V0k ! 0

Equation (1) thus becomes

& TOk ! (Q(R2% & RV0)k

% ! "
V
R
O" & "

(Q
TO

R2" Ans.

The result may surprise you: Even if the retarding torque TO is negligible, the arm rotational
speed is limited to the value V0/R imposed by the outlet speed and the arm length.

As our fourth and final basic law, we apply the Reynolds transport theorem (3.12) to
the first law of thermodynamics, Eq. (3.5). The dummy variable B becomes energy E,
and the energy per unit mass is , ! dE/dm ! e. Equation (3.5) can then be written for
a fixed control volume as follows:15

"
d
d
Q
t
" & "

d
d
W
t
" ! "

d
d
E
t
" ! "

d
d
t
" "!CV

e( d!# + !
CS 

e((V " n) dA (3.57)

Recall that positive Q denotes heat added to the system and positive W denotes work
done by the system.

The system energy per unit mass e may be of several types:

e ! einternal + ekinetic + epotential + eother
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3.6 The Energy Equation14

14This section should be read for information and enrichment even if you lack formal background in
thermodynamics.

15The energy equation for a deformable control volume is rather complicated and is not discussed
here. See Refs. 4 and 5 for further details.



where eother could encompass chemical reactions, nuclear reactions, and electrostatic
or magnetic field effects. We neglect eother here and consider only the first three terms
as discussed in Eq. (1.9), with z defined as “up”:

e ! û + "12"V2+ gz (3.58)

The heat and work terms could be examined in detail. If this were a heat-transfer
book, dQ/dT would be broken down into conduction, convection, and radiation effects
and whole chapters written on each (see, e.g., Ref. 3). Here we leave the term un-
touched and consider it only occasionally.

Using for convenience the overdot to denote the time derivative, we divide the work
term into three parts:

Ẇ ! Ẇshaft + Ẇpress + Ẇviscous stresses ! Ẇs + Ẇp+ Ẇ/

The work of gravitational forces has already been included as potential energy in Eq.
(3.58). Other types of work, e.g., those due to electromagnetic forces, are excluded
here.

The shaft work isolates that portion of the work which is deliberately done by a
machine (pump impeller, fan blade, piston, etc.) protruding through the control sur-
face into the control volume. No further specification other than Ẇs is desired at
this point, but calculations of the work done by turbomachines will be performed
in Chap. 11.

The rate of work Ẇp done on pressure forces occurs at the surface only; all work
on internal portions of the material in the control volume is by equal and opposite
forces and is self-canceling. The pressure work equals the pressure force on a small
surface element dA times the normal velocity component into the control volume

dẆp! & (pdA)Vn,in ! & p(& V " n) dA

The total pressure work is the integral over the control surface

Ẇp! !
CS

p(V " n) dA (3.59)

A cautionary remark: If part of the control surface is the surface of a machine part, we
prefer to delegate that portion of the pressure to the shaft work term Ẇs, not to Ẇp,
which is primarily meant to isolate the fluid-flow pressure-work terms.

Finally, the shear work due to viscous stresses occurs at the control surface, the in-
ternal work terms again being self-canceling, and consists of the product of each vis-
cous stress (one normal and two tangential) and the respective velocity component

dẆ/ ! & 5 " V dA

or Ẇ/ ! & !
CS

5 " V dA (3.60)

where 5 is the stress vector on the elemental surface dA. This term may vanish or be
negligible according to the particular type of surface at that part of the control volume:

Solid surface. For all parts of the control surface which are solid confining walls,
V ! 0 from the viscous no-slip condition; hence Ẇ/ ! zero identically.
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One-Dimensional Energy-Flux
Terms

Surface of a machine. Here the viscous work is contributed by the machine, and
so we absorb this work in the term Ẇs.

An inlet or outlet. At an inlet or outlet, the flow is approximately normal to the
element dA; hence the only viscous-work term comes from the normal stress
5nnVn dA. Since viscous normal stresses are extremely small in all but rare
cases, e.g., the interior of a shock wave, it is customary to neglect viscous
work at inlets and outlets of the control volume.

Streamline surface. If the control surface is a streamline such as the upper curve
in the boundary-layer analysis of Fig. 3.11, the viscous-work term must be
evaluated and retained if shear stresses are significant along this line. In the
particular case of Fig. 3.11, the streamline is outside the boundary layer, and
viscous work is negligible.

The net result of the above discussion is that the rate-of-work term in Eq. (3.57)
consists essentially of

Ẇ ! Ẇs + !
CS 

p(V * n) dA & !
CS 

(5 " V)SS dA (3.61)

where the subscript SS stands for stream surface. When we introduce (3.61) and (3.58)
into (3.57), we find that the pressure-work term can be combined with the energy-flux
term since both involve surface integrals of V " n. The control-volume energy equation
thus becomes

Q̇ & Ẇs & (Ẇυ)SS ! "
-
-
t
" "!CV 

ep d!# + !
CS 

(e + "
p
(

")((V " n) dA (3.62)

Using e from (3.58), we see that the enthalpy ĥ ! û + p/( occurs in the control-sur-
face integral. The final general form for the energy equation for a fixed control vol-
ume becomes

Q̇ & Ẇs & Ẇυ ! "
-
-
t
" )!CV "û + "12" V2+ gz# ( d!*+  !

CS "ĥ + "12" V2+ gz# ((V " n) dA

(3.63)

As mentioned above, the shear-work term Ẇ/ is rarely important.

If the control volume has a series of one-dimensional inlets and outlets, as in Fig.
3.6, the surface integral in (3.63) reduces to a summation of outlet fluxes minus in-
let fluxes

!
CS

(ĥ + "12"V2+ gz)((V " n) dA

!%(ĥ + "12"V2+ gz)outṁout & %(ĥ + "12"V2+ gz)inṁin (3.64)

where the values of ĥ, "12"V2, and gz are taken to be averages over each cross section.
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EXAMPLE 3.16

A steady-flow machine (Fig. E3.16) takes in air at section 1 and discharges it at sections 2 and
3. The properties at each section are as follows:

Section A, ft2 Q, ft3/s T, °F p, lbf/in2 abs z, ft

1 0.4 100 70 20 1.0
2 1.0 40 100 30 4.0
3 0.25 50 200 ? 1.5

Work is provided to the machine at the rate of 150 hp. Find the pressure p3 in lbf/in2 absolute
and the heat transfer Q̇ in Btu/s. Assume that air is a perfect gas with R ! 1715 and cp! 6003
ft * lbf/(slug * °R).

Solution

The control volume chosen cuts across the three desired sections and otherwise follows the solid
walls of the machine. Therefore the shear-work term W/ is negligible. We have enough infor-
mation to compute Vi ! Qi /Ai immediately

V1 ! "
1
0
0
.4
0

" ! 250 ft/s V2 ! "
1
4
.
0
0
" ! 40 ft/s V3 ! "

0
5
.2
0
5

" ! 200 ft/s

and the densities (i ! pi/(RTi)

(1 !"
1715

2
(
0
7
(
0
14

+
4)

460)
"! 0.00317 slug/ft3

(2 ! "
1
3
7
0
1
(
5
1
(
4
5
4
6
)
0)

" ! 0.00450 slug/ft3

but (3 is determined from the steady-flow continuity relation:

ṁ1 ! ṁ2 + ṁ3

(1Q1 ! (2Q2 + (3Q3 (1)

0.00317(100) ! 0.00450(40) + (3(50)

or 50(3 ! 0.317 & 0.180 ! 0.137 slug/s

(3 ! "
0.

5
1
0
37
" ! 0.00274 slug/ft3! "

17
1
1
4
5
4
(6
p
6
3

0)
"

p3 ! 21.5 lbf/in2 absolute Ans.

Note that the volume flux Q1 6 Q2 + Q3 because of the density changes.
For steady flow, the volume integral in (3.63) vanishes, and we have agreed to neglect vis-

cous work. With one inlet and two outlets, we obtain

Q̇& Ẇs ! & ṁ1(ĥ1 + "12"V1
2+ gz1) + ṁ2(ĥ2 + "12"V2

2+ gz2) + ṁ3(ĥ3 + "12"V3
2+ gz3) (2)

where Ẇs is given in hp and can be quickly converted to consistent BG units:

Ẇs ! & 150 hp [550 ft * lbf/(s * hp)]

! & 82,500 ft * lbf/s negative work on system
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(2)

Q = ?150 hp
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The Steady-Flow Energy Equation

For a perfect gas with constant cp, ĥ ! cpT plus an arbitrary constant. It is instructive to sepa-
rate the flux terms in Eq. (2) above to examine their magnitudes:

Enthalpy flux:

cp(& ṁ1T1 + ṁ2T2 + ṁ3T3) ! [6003 ft * lbf/(slug * °R)][(& 0.317 slug/s)(530 °R)

+ 0.180(560) + 0.137(660)]

! & 1,009,000 + 605,000 + 543,000

! + 139,000 ft * lbf/s

Kinetic-energy flux:

& ṁ1("12"V1
2) + ṁ2("12"V2

2) + ṁ3("12"V3
2) ! "12"[& 0.317(250)2+ 0.180(40)2+ 0.137(200)2]

! & 9900 + 150 + 2750 ! & 7000 ft * lbf/s

Potential-energy flux:

g(& ṁ1z1 + ṁ2z2 + ṁ3z3) ! 32.2[& 0.317(1.0) + 0.180(4.0) + 0.137(1.5)]

! & 10 + 23 + 7 ! + 20 ft * lbf/s

These are typical effects: The potential-energy flux is negligible in gas flows, the kinetic-energy
flux is small in low-speed flows, and the enthalpy flux is dominant. It is only when we neglect
heat-transfer effects that the kinetic and potential energies become important. Anyway, we can
now solve for the heat flux

Q̇ ! & 82,500 + 139,000 & 7000 + 20 ! 49,520 ft * lbf/s (3)

Converting, we get

Q̇ !"
778.2

49
ft
,5
*
2
lb
0
f/Btu

"! + 63.6 Btu/s Ans.

For steady flow with one inlet and one outlet, both assumed one-dimensional, Eq. (3.63)
reduces to a celebrated relation used in many engineering analyses. Let section 1 be
the inlet and section 2 the outlet. Then

Q̇ & Ẇs & Ẇ/ ! & ṁ1(ĥ1 + "12"V1
2+ gz1) + ṁ2(ĥ2 + "12"V2

2+ gz2) (3.65)

But, from continuity, ṁ1 ! ṁ2 ! ṁ, and we can rearrange (3.65) as follows:

ĥ1 + "12"V1
2+ gz1 ! (ĥ2 + "12"V2

2+ gz2) & q + ws + wυ (3.66)

where q ! Q̇/ṁ ! dQ/dm, the heat transferred to the fluid per unit mass. Similarly,
ws ! Ẇs/ṁ ! dWs/dm and wυ ! Ẇυ/ṁ ! dWυ/dm. Equation (3.66) is a general form
of the steady-flow energy equation, which states that the upstream stagnation enthalpy
H1 ! (ĥ + "12"V 2+ gz)1 differs from the downstream value H2 only if there is heat trans-
fer, shaft work, or viscous work as the fluid passes between sections 1 and 2. Recall
that q is positive if heat is added to the control volume and that ws and w/ are positive
if work is done by the fluid on the surroundings.
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Friction Losses in Low-Speed
Flow

Each term in Eq. (3.66) has the dimensions of energy per unit mass, or velocity
squared, which is a form commonly used by mechanical engineers. If we divide through
by g, each term becomes a length, or head, which is a form preferred by civil engi-
neers. The traditional symbol for head is h, which we do not wish to confuse with en-
thalpy. Therefore we use internal energy in rewriting the head form of the energy re-
lation:

"
p
7
1" + "

û
g
1" + "

V
2g

1
2

" + z1 ! "
p
7
2" + "

û
g
2" + "

V
2g

1
2

" + z2 & hq + hs + h/ (3.67)

where hq ! q/g, hs ! ws/g, and hυ ! wu/g are the head forms of the heat added, shaft
work done, and viscous work done, respectively. The term p/7 is called pressure head
and the term V2/2g is denoted as velocity head.

A very common application of the steady-flow energy equation is for low-speed flow
with no shaft work and negligible viscous work, such as liquid flow in pipes. For this
case Eq. (3.67) may be written in the form

"
p
7
1" + "

V
2g

1
2

" + z1 ! ""
p
7
2" + "

V
2g

2
2

" + z2# + "
û 2 & û

g
1 & q
" (3.68)

The term in parentheses is called the useful head or available head or total head of
the flow, denoted as h0. The last term on the right is the difference between the avail-
able head upstream and downstream and is normally positive, representing the loss in
head due to friction, denoted as hf. Thus, in low-speed (nearly incompressible) flow
with one inlet and one exit, we may write

""
7
p

" + "
V
2g

2

" + z#in
! ""

7
p

" + "
V
2g

2

" + z#out
+ hfriction & hpump + hturbine (3.69)

Most of our internal-flow problems will be solved with the aid of Eq. (3.69). The h
terms are all positive; that is, friction loss is always positive in real (viscous) flows, a
pump adds energy (increases the left-hand side), and a turbine extracts energy from the
flow. If hp and/or ht are included, the pump and/or turbine must lie between points 1
and 2. In Chaps. 5 and 6 we shall develop methods of correlating hf losses with flow
parameters in pipes, valves, fittings, and other internal-flow devices.

EXAMPLE 3.17

Gasoline at 20°C is pumped through a smooth 12-cm-diameter pipe 10 km long, at a flow rate
of 75 m3/h (330 gal/min). The inlet is fed by a pump at an absolute pressure of 24 atm. The exit
is at standard atmospheric pressure and is 150 m higher. Estimate the frictional head loss hf, and
compare it to the velocity head of the flow V2/(2g). (These numbers are quite realistic for 
liquid flow through long pipelines.)

Solution

For gasoline at 20°C, from Table A.3, ( ! 680 kg/m3, or 7 ! (680)(9.81) ! 6670 N/m3. There
is no shaft work; hence Eq. (3.69) applies and can be evaluated:
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"
p
7
in" + "

V
2g

in
2

" + zin ! "
p
7
out" + "

V
2

2

g
out" + zout + hf (1)

The pipe is of uniform cross section, and thus the average velocity everywhere is

Vin ! Vout ! "
Q
A

" !"
(
(
7
.
5
/
/
4
3
)
6
(
0
0
0
.1
)
2
m
m

3/
)
s
2" & 1.84 m/s

Being equal at inlet and exit, this term will cancel out of Eq. (1) above, but we are asked to com-
pute the velocity head of the flow for comparison purposes:

"
V
2g

2

" ! "
2
(
(
1
9
.8
.8
4
1

m
m

/
/
s
s
)
2

2

)
" & 0.173 m

Now we are in a position to evaluate all terms in Eq. (1) except the friction head loss:

+ 0.173 m + 0 m ! "
10

6
1
6
,
7
3
0
50

N
N
/m

/m
3

2

" + 0.173 m + 150 m + hf

or hf ! 364.7 & 15.2 & 150 & 199 m Ans.

The friction head is larger than the elevation change 8z, and the pump must drive the flow against
both changes, hence the high inlet pressure. The ratio of friction to velocity head is

"
V2/

h
(
f

2g)
" & "

0
1
.1
9
7
9
3
m
m

" & 1150 Ans.

This high ratio is typical of long pipelines. (Note that we did not make direct use of the 
10,000-m pipe length, whose effect is hidden within hf.) In Chap. 6 we can state this problem
in a more direct fashion: Given the flow rate, fluid, and pipe size, what inlet pressure is needed?
Our correlations for hf will lead to the estimate pinlet & 24 atm, as stated above.

EXAMPLE 3.18

Air [R ! 1715, cp! 6003 ft * lbf/(slug * °R)] flows steadily, as shown in Fig. E3.18, through a
turbine which produces 700 hp. For the inlet and exit conditions shown, estimate (a) the exit ve-
locity V2 and (b) the heat transferred Q̇ in Btu/h.

(24)(101,350 N/m2)
"""

6670 N/m3
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1 2

Turbomachine

ws = 700 hp⋅

D1 = 6 in

p1 = 150 lb/in2

T1 = 300° F

V1 = 100 ft/s

D2 = 6 in

p2 = 40 lb/in2

T2 = 35° FQ ?⋅
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Part (b)

Solution

The inlet and exit densities can be computed from the perfect-gas law:

(1 ! "
R
p
T
1

1
" !"

1715
1
(
5
4
0
6
(
0
14

+
4)

300)
"! 0.0166 slug/ft3

(2 ! "
R
p
T
2

2
" !"

1715
4
(
0
4
(
6
1
0
44

+
)

35)
"! 0.00679 slug/ft3

The mass flow is determined by the inlet conditions

ṁ ! (1A1V1 ! (0.0166) "
.
4

" ""
1
6
2
"#

2
(100) ! 0.325 slug/s

Knowing mass flow, we compute the exit velocity

ṁ ! 0.325 ! (2A2V2 ! (0.00679) "
.
4

" ""
1
6
2
"#

2
V2

or V2 ! 244 ft/s Ans. (a)

The steady-flow energy equation (3.65) applies with Ẇ/ ! 0, z1 ! z2, and ĥ ! cpT:

Q̇ & Ẇs ! ṁ (cpT2 + "12"V2
2& cpT1 & "12"V1

2)

Convert the turbine work to foot-pounds-force per second with the conversion factor 1 hp !
550 ft * lbf/s. The turbine work is positive

Q̇ & 700(550) ! 0.325[6003(495) + "12"(244)2& 6003(760) & "12"(100)2]

! & 510,000 ft * lbf/s

or Q̇ ! & 125,000 ft * lbf/s

Convert this to British thermal units as follows:

Q̇ ! (& 125,000 ft * lbf/s) "
778.

3
2
6
f
0
t
0
*

s
lb
/h
f/Btu

"

! & 576,000 Btu/h Ans. (b)

The negative sign indicates that this heat transfer is a loss from the control volume.

Often the flow entering or leaving a port is not strictly one-dimensional. In particular,
the velocity may vary over the cross section, as in Fig. E3.4. In this case the kinetic-
energy term in Eq. (3.64) for a given port should be modified by a dimensionless cor-
rection factor 9 so that the integral can be proportional to the square of the average
velocity through the port

!
port

("12"V2)((V " n) dA $ 9("12"Vav
2 )ṁ

where Vav ! "
A
1

" ! u dA for incompressible flow
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If the density is also variable, the integration is very cumbersome; we shall not treat
this complication. By letting u be the velocity normal to the port, the first equation
above becomes, for incompressible flow,

"12"( ! u3dA ! "12"(9Vav
3 A

or 9 ! "
A
1

" ! ""
V
u

av
"#

3
dA (3.70)

The term 9 is the kinetic-energy correction factor, having a value of about 2.0 for fully
developed laminar pipe flow and from 1.04 to 1.11 for turbulent pipe flow. The com-
plete incompressible steady-flow energy equation (3.69), including pumps, turbines,
and losses, would generalize to

""
(
p
g
" + "

2
9
g
" V2 + z#in

! ""
(
p
g
" + "

2
9
g
" V2 + z#out

+ hturbine & hpump + hfriction  (3.71)

where the head terms on the right (ht, hp, hf) are all numerically positive. All additive
terms in Eq. (3.71) have dimensions of length {L}. In problems involving turbulent
pipe flow, it is common to assume that 9 & 1.0. To compute numerical values, we can
use these approximations to be discussed in Chap. 6:

Laminar flow: u ! U0)1 & ""
R
r
"#

2

*
from which Vav ! 0.5U0

and 9 ! 2.0 (3.72)

Turbulent flow: u & U0"1 & "
R
r
"#

m
m & "

1
7

"

from which, in Example 3.4,

Vav !"
(1 + m

2
)
U
(2

0

+ m)
"

Substituting into Eq. (3.70) gives

9 ! (3.73)

and numerical values are as follows:

Turbulent flow:

These values are only slightly different from unity and are often neglected in elemen-
tary turbulent-flow analyses. However, 9 should never be neglected in laminar flow.

(1 + m)3(2 + m)3

"""
4(1 + 3m)(2 + 3m)

3.6 The Energy Equation 171

m "15" "16" "17" "18" "19"

9 1.106 1.077 1.058 1.046 1.037



E3.19

EXAMPLE 3.19

A hydroelectric power plant (Fig. E3.19) takes in 30 m3/s of water through its turbine and dis-
charges it to the atmosphere at V2 ! 2 m/s. The head loss in the turbine and penstock system is
hf ! 20 m. Assuming turbulent flow, 9 & 1.06, estimate the power in MW extracted by the tur-
bine.
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Solution

We neglect viscous work and heat transfer and take section 1 at the reservoir surface (Fig. E3.19),
where V1 & 0, p1 ! patm, and z1 ! 100 m. Section 2 is at the turbine outlet. The steady-flow en-
ergy equation (3.71) becomes, in head form,

"
p
7
1" + "

9
2
1V
g

1
2

" + z1 ! "
p
7
2" + "

9
2
2V
g

2
2

" + z2 + ht + hf

"
p
7
a" + "

1
2
.
(
0
9
6
.
(
8
0
1
)
)

2

" + 100 m ! "
p
7
a" + "

1
2
.0
(9
6
.
(
8
2
1
.0

m
m
/s
/s
2
)
)

2

"+ 0 m + ht + 20 m

The pressure terms cancel, and we may solve for the turbine head (which is positive):

ht ! 100 & 20 & 0.2 & 79.8 m

The turbine extracts about 79.8 percent of the 100-m head available from the dam. The total
power extracted may be evaluated from the water mass flow:

P ! ṁws ! ((Q)(ght) ! (998 kg/m3)(30 m3/s)(9.81 m/s2)(79.8 m)

! 23.4 E6 kg * m2/s3! 23.4 E6 N * m/s ! 23.4 MW Ans. 7

The turbine drives an electric generator which probably has losses of about 15 percent, so the
net power generated by this hydroelectric plant is about 20 MW.

EXAMPLE 3.20

The pump in Fig. E3.20 delivers water (62.4 lbf/ft3) at 3 ft3/s to a machine at section 2, which
is 20 ft higher than the reservoir surface. The losses between 1 and 2 are given by hf ! KV2

2/(2g),

Water

30 m3/s

z1 = 100 m

z2 = 0 m

2 m/s

Turbine

1



E3.20

where K & 7.5 is a dimensionless loss coefficient (see Sec. 6.7). Take 9 & 1.07. Find the horse-
power required for the pump if it is 80 percent efficient.

Solution

If the reservoir is large, the flow is steady, with V1 & 0. We can compute V2 from the given flow
rate and the pipe diameter:

V2 ! "
A
Q

2
" ! ! 61.1 ft/s

The viscous work is zero because of the solid walls and near-one-dimensional inlet and exit. The
steady-flow energy equation (3.71) becomes

"
p
7
1" + "

9
2
1V
g

1
2

" + z1 ! "
p
7
2" + "

9
2
2V
g

2
2

" + z2 + hs + hf

Introducing V1 & 0, z1 ! 0, and hf ! KV2
2/(2g), we may solve for the pump head:

hs ! "
p1 &

7

p2" & z2 & (92 + K)""
V
2g

2
2

"#
The pressures should be in lbf/ft2 for consistent units. For the given data, we obtain

hs ! & 20 ft & (1.07 + 7.5) "
2
(
(
6
3
1
2
.1
.2

f
f
t
t
/
/
s
s
)
2

2

)
"

! 11 & 20 & 497 ! & 506 ft

The pump head is negative, indicating work done on the fluid. As in Example 3.19, the power
delivered is computed from

P ! ṁws ! (Qghs ! (1.94 slug/ft3)(3.0 ft3/s)(32.2 ft/s2)(& 507 ft) ! & 94,900 ft * lbf/s

or hp !"
55

9
0
4,

f
9
t
0
*
0
lb
ft
f/

*
(s
lb
*
f
h
/s
p)

"& 173 hp

(14.7 & 10.0)(144) lbf/ft2
"""

62.4 lbf/ft3

3 ft3/s
""
(./4)("1

3
2" ft)2
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2
1

z1 = 0 

Pump

hs (negative)

Water

Machine

D2 = 3 in
z2 = 20 ft
p2 = 10 lbf/in2

p1 = 14.7 lbf/in2 abs



3.7 Frictionless Flow:
The Bernoulli Equation

We drop the negative sign when merely referring to the “power” required. If the pump is 80 per-
cent efficient, the input power required to drive it is

Pinput ! "
effic

P
iency
" ! "

17
0
3
.8

hp
" & 216 hp Ans.

The inclusion of the kinetic-energy correction factor 9 in this case made a difference of about
1 percent in the result.

Closely related to the steady-flow energy equation is a relation between pressure, ve-
locity, and elevation in a frictionless flow, now called the Bernoulli equation. It was
stated (vaguely) in words in 1738 in a textbook by Daniel Bernoulli. A complete der-
ivation of the equation was given in 1755 by Leonhard Euler. The Bernoulli equation
is very famous and very widely used, but one should be wary of its restrictions—all
fluids are viscous and thus all flows have friction to some extent. To use the Bernoulli
equation correctly, one must confine it to regions of the flow which are nearly fric-
tionless. This section (and, in more detail, Chap. 8) will address the proper use of the
Bernoulli relation.

Consider Fig. 3.15, which is an elemental fixed streamtube control volume of vari-
able area A(s) and length ds, where s is the streamline direction. The properties ((, V,
p) may vary with s and time but are assumed to be uniform over the cross section A.
The streamtube orientation ) is arbitrary, with an elevation change dz ! ds sin ). Fric-
tion on the streamtube walls is shown and then neglected—a very restrictive assump-
tion.

Conservation of mass (3.20) for this elemental control volume yields

"
d
d
t
" "!CV

( d!# + ṁout & ṁin ! 0 & "
-
-
(
t
" d! + dṁ

where ṁ ! (AV and d! & A ds. Then our desired form of mass conservation is

dṁ ! d((AV) ! & "
-
-
(
t
" A ds (3.74)
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This relation does not require an assumption of frictionless flow.
Now write the linear-momentum relation (3.37) in the streamwise direction:

%dFs ! "
d
d
t
" "!CV

V( d!# + (ṁV)out & (ṁV)in & "
-
-
t
" ((V) A ds + d(ṁV)

where Vs ! V itself because s is the streamline direction. If we neglect the shear force
on the walls (frictionless flow), the forces are due to pressure and gravity. The stream-
wise gravity force is due to the weight component of the fluid within the control vol-
ume:

dFs,grav ! & dW sin ) ! & 7A ds sin ) ! & 7A dz

The pressure force is more easily visualized, in Fig. 3.15b, by first subtracting a uni-
form value p from all surfaces, remembering from Fig. 3.7 that the net force is not
changed. The pressure along the slanted side of the streamtube has a streamwise com-
ponent which acts not on A itself but on the outer ring of area increase dA. The net
pressure force is thus

dFs,press ! "12" dpdA & dp(A + dA) & & A dp

to first order. Substitute these two force terms into the linear-momentum relation:

% dFs ! & 7A dz & A dp! "
-
-
t
" ((V) A ds + d(ṁV)

! "
-
-
(
t
" VA ds + "

-
-
V
t
" (A ds + ṁ dV + V dṁ

The first and last terms on the right cancel by virtue of the continuity relation (3.74).
Divide what remains by (A and rearrange into the final desired relation:

"
-
-
V
t
" ds + "

d
(
p
" + V dV + g dz ! 0 (3.75)

This is Bernoulli’s equation for unsteady frictionless flow along a streamline. It is in
differential form and can be integrated between any two points 1 and 2 on the stream-
line:

!2

1
"
-
-
V
t
" ds + !2

1
"
d
(
p
" + "

1
2

" (V2
2& V1

2) + g(z2 & z1) ! 0 (3.76)

To evaluate the two remaining integrals, one must estimate the unsteady effect -V/-t and
the variation of density with pressure. At this time we consider only steady (-V/-t ! 0)
incompressible (constant-density) flow, for which Eq. (3.76) becomes

"
p2 &

(
p1" + "

1
2

" (V2
2& V1

2) + g(z2 & z1) ! 0

or "
p
(
1" + "

1
2

" V1
2+ gz1 ! "

p
(
2" + "

1
2

" V2
2+ gz2 ! const (3.77)

This is the Bernoulli equation for steady frictionless incompressible flow along a
streamline.
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Relation between the Bernoulli
and Steady-Flow Energy
Equations

Equation (3.77) is a widely used form of the Bernoulli equation for incompressible
steady frictionless streamline flow. It is clearly related to the steady-flow energy equa-
tion for a streamtube (flow with one inlet and one outlet), from Eq. (3.66), which we
state as follows:

"
p
(
1" + "

91

2
V1

2

" + gz1 ! "
p
(
2" + "

92

2
V2

2

" + gz2 + (û 2 & û 1 & q) + ws + wv (3.78)

This relation is much more general than the Bernoulli equation, because it allows for
(1) friction, (2) heat transfer, (3) shaft work, and (4) viscous work (another frictional
effect).

If we compare the Bernoulli equation (3.77) with the energy equation (3.78), we
see that the Bernoulli equation contains even more restrictions than might first be re-
alized. The complete list of assumptions for Eq. (3.77) is as follows:

1. Steady flow—a common assumption applicable to many flows.
2. Incompressible flow—acceptable if the flow Mach number is less than 0.3.
3. Frictionless flow—very restrictive, solid walls introduce friction effects.
4. Flow along a single streamline—different streamlines may have different

“Bernoulli constants” w0 ! p/( + V2/2 + gz, depending upon flow conditions.
5. No shaft work between 1 and 2 —no pumps or turbines on the streamline.
6. No heat transfer between 1 and 2 —either added or removed.

Thus our warning: Be wary of misuse of the Bernoulli equation. Only a certain lim-
ited set of flows satisfies all six assumptions above. The usual momentum or “me-
chanical force” derivation of the Bernoulli equation does not even reveal items 5 and
6, which are thermodynamic limitations. The basic reason for restrictions 5 and 6 is
that heat transfer and work transfer, in real fluids, are married to frictional effects,
which therefore invalidate our assumption of frictionless flow.

Figure 3.16 illustrates some practical limitations on the use of Bernoulli’s equation
(3.77). For the wind-tunnel model test of Fig. 3.16a, the Bernoulli equation is valid in
the core flow of the tunnel but not in the tunnel-wall boundary layers, the model sur-
face boundary layers, or the wake of the model, all of which are regions with high fric-
tion.

In the propeller flow of Fig. 3.16b, Bernoulli’s equation is valid both upstream
and downstream, but with a different constant w0 ! p/( + V2/2 + gz, caused by the
work addition of the propeller. The Bernoulli relation (3.77) is not valid near the
propeller blades or in the helical vortices (not shown, see Fig. 1.12a) shed down-
stream of the blade edges. Also, the Bernoulli constants are higher in the flowing
“slipstream” than in the ambient atmosphere because of the slipstream kinetic en-
ergy.

For the chimney flow of Fig. 3.16c, Eq. (3.77) is valid before and after the fire, but
with a change in Bernoulli constant that is caused by heat addition. The Bernoulli equa-
tion is not valid within the fire itself or in the chimney-wall boundary layers.

The moral is to apply Eq. (3.77) only when all six restrictions can be satisfied: steady
incompressible flow along a streamline with no friction losses, no heat transfer, and
no shaft work between sections 1 and 2.
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A useful visual interpretation of Bernoulli’s equation is to sketch two grade lines of a
flow. The energy grade line (EGL) shows the height of the total Bernoulli constant
h0 ! z + p/7 + V2/(2g). In frictionless flow with no work or heat transfer, Eq. (3.77),
the EGL has constant height. The hydraulic grade line (HGL) shows the height corre-
sponding to elevation and pressure head z + p/7, that is, the EGL minus the velocity
head V2/(2g). The HGL is the height to which liquid would rise in a piezometer tube
(see Prob. 2.11) attached to the flow. In an open-channel flow the HGL is identical to
the free surface of the water.

Figure 3.17 illustrates the EGL and HGL for frictionless flow at sections 1 and 2
of a duct. The piezometer tubes measure the static-pressure head z + p/7 and thus out-
line the HGL. The pitot stagnation-velocity tubes measure the total head z + p/7 +
V2/(2g), which corresponds to the EGL. In this particular case the EGL is constant, and
the HGL rises due to a drop in velocity.

In more general flow conditions, the EGL will drop slowly due to friction losses
and will drop sharply due to a substantial loss (a valve or obstruction) or due to work
extraction (to a turbine). The EGL can rise only if there is work addition (as from a
pump or propeller). The HGL generally follows the behavior of the EGL with respect
to losses or work transfer, and it rises and/or falls if the velocity decreases and/or in-
creases.
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Fig. 3.17 Hydraulic and energy
grade lines for frictionless flow in a
duct.

E3.21 

As mentioned before, no conversion factors are needed in computations with the
Bernoulli equation if consistent SI or BG units are used, as the following examples
will show.

In all Bernoulli-type problems in this text, we consistently take point 1 upstream
and point 2 downstream.

EXAMPLE 3.21

Find a relation between nozzle discharge velocity V2and tank free-surface height h as in Fig.
E3.21. Assume steady frictionless flow.
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Solution

As mentioned, we always choose point 1 upstream and point 2 downstream. Try to choose points
1 and 2 where maximum information is known or desired. Here we select point 1 as the tank
free surface, where elevation and pressure are known, and point 2 as the nozzle exit, where again
pressure and elevation are known. The two unknowns are V1 and V2.

Mass conservation is usually a vital part of Bernoulli analyses. If A1 is the tank cross section
and A2 the nozzle area, this is approximately a one-dimensional flow with constant density, Eq.
(3.30),

A1V1 ! A2V2 (1)

Bernoulli’s equation (3.77) gives

"
p
(
1" + "12"V1

2 + gz1 ! "
p
(
2" + "12"V2

2 + gz2

But since sections 1 and 2 are both exposed to atmospheric pressure p1 ! p2 ! pa, the pressure
terms cancel, leaving

V2
2 & V1

2 ! 2g(z1 & z2) ! 2gh (2)

Eliminating V1 between Eqs. (1) and (2), we obtain the desired result:

V2
2 ! "

1 &
2g

A
h

2
2/A1

2" Ans. (3)

Generally the nozzle area A2 is very much smaller than the tank area A1, so that the ratio A2
2/A1

2

is doubly negligible, and an accurate approximation for the outlet velocity is

V2 & (2gh)1/2 Ans. (4)

This formula, discovered by Evangelista Torricelli in 1644, states that the discharge velocity
equals the speed which a frictionless particle would attain if it fell freely from point 1 to point
2. In other words, the potential energy of the surface fluid is entirely converted to kinetic energy
of efflux, which is consistent with the neglect of friction and the fact that no net pressure work
is done. Note that Eq. (4) is independent of the fluid density, a characteristic of gravity-driven
flows.

Except for the wall boundary layers, the streamlines from 1 to 2 all behave in the same way,
and we can assume that the Bernoulli constant h0 is the same for all the core flow. However, the
outlet flow is likely to be nonuniform, not one-dimensional, so that the average velocity is only
approximately equal to Torricelli’s result. The engineer will then adjust the formula to include
a dimensionless discharge coefficient cd

(V2)av ! "
A
Q

2
" ! cd(2gh)1/2 (5)

As discussed in Sec. 6.10, the discharge coefficient of a nozzle varies from about 0.6 to 1.0 as
a function of (dimensionless) flow conditions and nozzle shape.

Before proceeding with more examples, we should note carefully that a solution by
Bernoulli’s equation (3.77) does not require a control-volume analysis, only a selec-
tion of two points 1 and 2 along a given streamline. The control volume was used to
derive the differential relation (3.75), but the integrated form (3.77) is valid all along
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the streamline for frictionless flow with no heat transfer or shaft work, and a control
volume is not necessary.

EXAMPLE 3.22

Rework Example 3.21 to account, at least approximately, for the unsteady-flow condition caused
by the draining of the tank.

Solution

Essentially we are asked to include the unsteady integral term involving -V/-t from Eq. (3.76).
This will result in a new term added to Eq. (2) from Example 3.21:

2 !2

1
"
-
-
V
t
" ds + V2

2 & V 1
2 ! 2gh (1)

Since the flow is incompressible, the continuity equation still retains the simple form A1V1 !
A2V2 from Example 3.21. To integrate the unsteady term, we must estimate the acceleration all
along the streamline. Most of the streamline is in the tank region where -V/-t & dV1/dt. The
length of the average streamline is slightly longer than the nozzle depth h. A crude estimate for
the integral is thus

!2

1
"
-
-
V
t
" ds & !2

1
"
d
d
V
t
1" ds & & "

d
d
V
t
1" h (2)

But since A1 and A2 are constant, dV1/dt & (A2/A1)(dV2/dt). Substitution into Eq. (1) gives

& 2h "
A
A

2

1
" "

d
d
V
t
2" + V2

2"1 & "
A
A1

2
2
2

"# & 2gh (3)

This is a first-order differential equation for V2(t). It is complicated by the fact that the depth h
is variable; therefore h ! h(t), as determined by the variation in V1(t)

h(t) ! h0 & !t

0
V1 dt (4)

Equations (3) and (4) must be solved simultaneously, but the problem is well posed and can be
handled analytically or numerically. We can also estimate the size of the first term in Eq. (3) by
using the approximation V2 & (2gh)1/2 from the previous example. After differentiation, we ob-
tain

2h "
A
A

2

1
" "

d
d
V
t
2" & &""

A
A

2

1
"#

2
V2

2 (5)

which is negligible if A2 : A1, as originally postulated.

EXAMPLE 3.23

A constriction in a pipe will cause the velocity to rise and the pressure to fall at section 2 in the
throat. The pressure difference is a measure of the flow rate through the pipe. The smoothly
necked-down system shown in Fig. E3.23 is called a venturi tube. Find an expression for the
mass flux in the tube as a function of the pressure change.
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E3.23

Solution

Bernoulli’s equation is assumed to hold along the center streamline

"
p
(
1" + "12"V1

2 + gz1 ! "
p
(
2" + "12"V2

2 + gz2

If the tube is horizontal, z1 ! z2 and we can solve for V2:

V2
2 & V1

2 ! "
2

(
8p
" 8p! p1 & p2 (1)

We relate the velocities from the incompressible continuity relation

A1V1 ! A2V2

or V1 ! ,2V2 , ! "
D
D

2

1
" (2)

Combining (1) and (2), we obtain a formula for the velocity in the throat

V2 ! )"((1
2

&
8p

,4)
"*

1/2
(3)

The mass flux is given by

ṁ ! (A2V2 ! A2""12(
&

8
,
p
4"#

1/2
(4)

This is the ideal frictionless mass flux. In practice, we measure ṁactual ! cd ṁ ideal and correlate
the discharge coefficient cd.

EXAMPLE 3.24

A 10-cm fire hose with a 3-cm nozzle discharges 1.5 m3/min to the atmosphere. Assuming fric-
tionless flow, find the force FB exerted by the flange bolts to hold the nozzle on the hose.

Solution

We use Bernoulli’s equation and continuity to find the pressure p1 upstream of the nozzle and
then we use a control-volume momentum analysis to compute the bolt force, as in Fig. E3.24.

The flow from 1 to 2 is a constriction exactly similar in effect to the venturi in Example 3.23
for which Eq. (1) gave

p1 ! p2 + "12"((V2
2 & V1

2) (1)
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E3.24

The velocities are found from the known flow rate Q ! 1.5 m3/min or 0.025 m3/s:

V2 ! "
A
Q

2
" !"

(.
0
/4
.0
)
2
(0
5
.0
m
3

3

m
/s

)2"! 35.4 m/s

V1 ! "
A
Q

1
" ! "

(.
0
/
.
4
0
)
2
(
5
0.

m
1

3

m
/s

)2" ! 3.2 m/s

We are given p2 ! pa ! 0 gage pressure. Then Eq. (1) becomes

p1 ! "12"(1000 kg/m3)[(35.42& 3.22) m2/s2]

! 620,000 kg/(m * s2) ! 620,000 Pa gage

The control-volume force balance is shown in Fig. E3.24b:

% Fx ! & FB + p1A1

and the zero gage pressure on all other surfaces contributes no force. The x-momentum flux is
+ ṁV2 at the outlet and & ṁV1 at the inlet. The steady-flow momentum relation (3.40) thus gives

& FB + p1A1 ! ṁ(V2 & V1)

or FB ! p1A1 & ṁ(V2 & V1) (2)

Substituting the given numerical values, we find

ṁ ! (Q ! (1000 kg/m3)(0.025 m3/s) ! 25 kg/s

A1 ! "
.
4

" D1
2 ! "

.
4

" (0.1 m)2 ! 0.00785 m2

FB ! (620,000 N/m2)(0.00785 m2) & (25 kg/s)[(35.4 & 3.2) m/s]

! 4872 N & 805 (kg * m)/s2 ! 4067 N (915 lbf) Ans.

This gives an idea of why it takes more than one firefighter to hold a fire hose at full discharge.

Notice from these examples that the solution of a typical problem involving
Bernoulli’s equation almost always leads to a consideration of the continuity equation
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Summary

as an equal partner in the analysis. The only exception is when the complete velocity
distribution is already known from a previous or given analysis, but that means that
the continuity relation has already been used to obtain the given information. The point
is that the continuity relation is always an important element in a flow analysis.

This chapter has analyzed the four basic equations of fluid mechanics: conservation of
(1) mass, (2) linear momentum, (3) angular momentum, and (4) energy. The equations
were attacked “in the large,” i.e., applied to whole regions of a flow. As such, the typ-
ical analysis will involve an approximation of the flow field within the region, giving
somewhat crude but always instructive quantitative results. However, the basic control-
volume relations are rigorous and correct and will give exact results if applied to the
exact flow field.

There are two main points to a control-volume analysis. The first is the selection of
a proper, clever, workable control volume. There is no substitute for experience, but
the following guidelines apply. The control volume should cut through the place where
the information or solution is desired. It should cut through places where maximum
information is already known. If the momentum equation is to be used, it should not
cut through solid walls unless absolutely necessary, since this will expose possible un-
known stresses and forces and moments which make the solution for the desired force
difficult or impossible. Finally, every attempt should be made to place the control vol-
ume in a frame of reference where the flow is steady or quasi-steady, since the steady
formulation is much simpler to evaluate.

The second main point to a control-volume analysis is the reduction of the analy-
sis to a case which applies to the problem at hand. The 24 examples in this chapter
give only an introduction to the search for appropriate simplifying assumptions. You
will need to solve 24 or 124 more examples to become truly experienced in simplify-
ing the problem just enough and no more. In the meantime, it would be wise for the
beginner to adopt a very general form of the control-volume conservation laws and
then make a series of simplifications to achieve the final analysis. Starting with the
general form, one can ask a series of questions:

1. Is the control volume nondeforming or nonaccelerating?
2. Is the flow field steady? Can we change to a steady-flow frame?
3. Can friction be neglected?
4. Is the fluid incompressible? If not, is the perfect-gas law applicable?
5. Are gravity or other body forces negligible?
6. Is there heat transfer, shaft work, or viscous work?
7. Are the inlet and outlet flows approximately one-dimensional?
8. Is atmospheric pressure important to the analysis? Is the pressure hydrostatic on

any portions of the control surface?
9. Are there reservoir conditions which change so slowly that the velocity and time

rates of change can be neglected?

In this way, by approving or rejecting a list of basic simplifications like those above,
one can avoid pulling Bernoulli’s equation off the shelf when it does not apply.
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