5.1 Introduction

Chapter 3
Dimensional Analysis
and Similarity

Motivation. In this chapter we discuss the planning, presentation, and interpretation
of experimental data. We shall try to convince you that such data are best presented in
dimensionless form. Experiments which might result in tables of output, or even mul-
tiple volumes of tables, might be reduced to a single set of curves—or even a single
curve—when suitably nondimensionalized. The technique for doing this is dimensional
analysis.

Chapter 3 presented gross control-volume balances of mass, momentum, and en-
ergy which led to estimates of global parameters: mass flow, force, torque, total heat
transfer. Chapter 4 presented infinitesimal balances which led to the basic partial dif-
ferential equations of fluid flow and some particular solutions. These two chapters cov-
ered analytical techniques, which are limited to fairly simple geometries and well-
defined boundary conditions. Probably one-third of fluid-flow problems can be attacked
in this analytical or theoretical manner.

The other two-thirds of all fluid problems are too complex, both geometrically and
physically, to be solved analytically. They must be tested by experiment. Their behav-
ior is reported as experimental data. Such data are much more useful if they are ex-
pressed in compact, economic form. Graphs are especially useful, since tabulated data
cannot be absorbed, nor can the trends and rates of change be observed, by most en-
gineering eyes. These are the motivations for dimensional analysis. The technique is
traditional in fluid mechanics and is useful in all engineering and physical sciences,
with notable uses also seen in the biological and social sciences.

Dimensional analysis can also be useful in theories, as a compact way to present an
analytical solution or output from a computer model. Here we concentrate on the pre-
sentation of experimental fluid-mechanics data.

Basically, dimensional analysis is a method for reducing the number and complexity
of experimental variables which affect a given physical phenomenon, by using a sort
of compacting technique. If a phenomenon depends upon n dimensional variables, di-
mensional analysis will reduce the problem to only k dimensionless variables, where
the reduction n — k = 1, 2, 3, or 4, depending upon the problem complexity. Gener-
ally n — k equals the number of different dimensions (sometimes called basic or pri-
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278 Chapter 5 Dimensional Analysis and Similarity

mary or fundamental dimensions) which govern the problem. In fluid mechanics, the
four basic dimensions are usually taken to be mass M, length L, time 7, and tempera-
ture O, or an MLTO system for short. Sometimes one uses an FLTO system, with force
F replacing mass.

Although its purpose is to reduce variables and group them in dimensionless form,
dimensional analysis has several side benefits. The first is enormous savings in time
and money. Suppose one knew that the force F on a particular body immersed in a
stream of fluid depended only on the body length L, stream velocity V, fluid density
p, and fluid viscosity u, that is,

F=fL,V, p, w (S.1

Suppose further that the geometry and flow conditions are so complicated that our in-
tegral theories (Chap. 3) and differential equations (Chap. 4) fail to yield the solution
for the force. Then we must find the function f{L, V, p, n) experimentally.

Generally speaking, it takes about 10 experimental points to define a curve. To find
the effect of body length in Eq. (5.1), we have to run the experiment for 10 lengths L.
For each L we need 10 values of V, 10 values of p, and 10 values of u, making a grand
total of 10*, or 10,000, experiments. At $50 per experiment—well, you see what we
are getting into. However, with dimensional analysis, we can immediately reduce
Eq. (5.1) to the equivalent form

F = o(2)

pVLE A\ (5.2)

or Cr = g(Re)

i.e., the dimensionless force coefficient F/(pV*L?) is a function only of the dimension-
less Reynolds number pVL/w. We shall learn exactly how to make this reduction in
Secs. 5.2 and 5.3.

The function g is different mathematically from the original function f, but it con-
tains all the same information. Nothing is lost in a dimensional analysis. And think of
the savings: We can establish g by running the experiment for only 10 values of the
single variable called the Reynolds number. We do not have to vary L, V, p, or w sep-
arately but only the grouping pVL/u. This we do merely by varying velocity V in, say,
a wind tunnel or drop test or water channel, and there is no need to build 10 different
bodies or find 100 different fluids with 10 densities and 10 viscosities. The cost is now
about $500, maybe less.

A second side benefit of dimensional analysis is that it helps our thinking and plan-
ning for an experiment or theory. It suggests dimensionless ways of writing equations
before we waste money on computer time to find solutions. It suggests variables which
can be discarded; sometimes dimensional analysis will immediately reject variables,
and at other times it groups them off to the side, where a few simple tests will show
them to be unimportant. Finally, dimensional analysis will often give a great deal of
insight into the form of the physical relationship we are trying to study.

A third benefit is that dimensional analysis provides scaling laws which can con-
vert data from a cheap, small model to design information for an expensive, large pro-
totype. We do not build a million-dollar airplane and see whether it has enough lift
force. We measure the lift on a small model and use a scaling law to predict the lift on
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the full-scale prototype airplane. There are rules we shall explain for finding scaling
laws. When the scaling law is valid, we say that a condition of similarity exists be-
tween the model and the prototype. In the simple case of Eq. (5.1), similarity is achieved
if the Reynolds number is the same for the model and prototype because the function
g then requires the force coefficient to be the same also:

If Re, =Re, then Cg,=Cpg, 5.3)

where subscripts m and p mean model and prototype, respectively. From the definition
of force coefficient, this means that

i - Pr. & z i 2 (5.4)
Fm pnl Vm Lm

for data taken where p,V,,L,/, = p,,V,nLyn/ W, Equation (5.4) is a scaling law: If you
measure the model force at the model Reynolds number, the prototype force at the
same Reynolds number equals the model force times the density ratio times the ve-
locity ratio squared times the length ratio squared. We shall give more examples later.
Do you understand these introductory explanations? Be careful; learning dimensional
analysis is like learning to play tennis: There are levels of the game. We can establish some
ground rules and do some fairly good work in this brief chapter, but dimensional analy-
sis in the broad view has many subtleties and nuances which only time and practice and
maturity enable you to master. Although dimensional analysis has a firm physical and
mathematical foundation, considerable art and skill are needed to use it effectively.

EXAMPLE 5.1

A copepod is a water crustacean approximately 1 mm in diameter. We want to know the drag
force on the copepod when it moves slowly in fresh water. A scale model 100 times larger is
made and tested in glycerin at V = 30 cm/s. The measured drag on the model is 1.3 N. For sim-
ilar conditions, what are the velocity and drag of the actual copepod in water? Assume that
Eq. (5.1) applies and the temperature is 20°C.

Solution

From Table A.3 the fluid properties are:

Water (prototype): w, = 0.001 kg/(m - s) pp =998 kg/m?
Glycerin (model): M = 1.5 kg/(m - s) pm = 1263 kg/m3
The length scales are L,, = 100 mm and L, = 1 mm. We are given enough model data to com-

pute the Reynolds number and force coefficient

_ PVl _ (1263 kg/m*)(0.3 m/s)(0.1 m)

R =25.
Em Mo 1.5 kg/(m - s) >3
Crm=—Ttm 13N =114
Fr o VoL, (1263 kg/m?)(0.3 m/s)?(0.1 m)>

Both these numbers are dimensionless, as you can check. For conditions of similarity, the pro-
totype Reynolds number must be the same, and Eq. (5.2) then requires the prototype force co-
efficient to be the same
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5.2 The Principle of
Dimensional Homogeneity

Re. - Re. — 253 = 298V(0.001)
= Nom 0.001
or V, = 0.0253 m/s = 2.53 cm/s Ans.
FP
Crp = Crm = 114 = 08 0.0253)(0.001)2
or F,=731x107"N Ans.

It would obviously be difficult to measure such a tiny drag force.

Historically, the first person to write extensively about units and dimensional reasoning
in physical relations was Euler in 1765. Euler’s ideas were far ahead of his time, as were
those of Joseph Fourier, whose 1822 book Analytical Theory of Heat outlined what is now
called the principle of dimensional homogeneity and even developed some similarity rules
for heat flow. There were no further significant advances until Lord Rayleigh’s book in
1877, Theory of Sound, which proposed a “method of dimensions” and gave several ex-
amples of dimensional analysis. The final breakthrough which established the method as
we know it today is generally credited to E. Buckingham in 1914 [29], whose paper out-
lined what is now called the Buckingham pi theorem for describing dimensionless para-
meters (see Sec. 5.3). However, it is now known that a Frenchman, A. Vaschy, in 1892 and
a Russian, D. Riabouchinsky, in 1911 had independently published papers reporting re-
sults equivalent to the pi theorem. Following Buckingham’s paper, P. W. Bridgman pub-
lished a classic book in 1922 [1], outlining the general theory of dimensional analysis. The
subject continues to be controversial because there is so much art and subtlety in using di-
mensional analysis. Thus, since Bridgman there have been at least 24 books published on
the subject [2 to 25]. There will probably be more, but seeing the whole list might make
some fledgling authors think twice. Nor is dimensional analysis limited to fluid mechan-
ics or even engineering. Specialized books have been written on the application of di-
mensional analysis to metrology [26], astrophysics [27], economics [28], building scale
models [36], chemical processing pilot plants [37], social sciences [38], biomedical sci-
ences [39], pharmacy [40], fractal geometry [41], and even the growth of plants [42].

In making the remarkable jump from the five-variable Eq. (5.1) to the two-variable
Eq. (5.2), we were exploiting a rule which is almost a self-evident axiom in physics.
This rule, the principle of dimensional homogeneity (PDH), can be stated as follows:

If an equation truly expresses a proper relationship between variables in a physical
process, it will be dimensionally homogeneous; i.e., each of its additive terms will

have the same dimensions.

All the equations which are derived from the theory of mechanics are of this form. For
example, consider the relation which expresses the displacement of a falling body

S =Sy + Vot + 35 (5.5)

Each term in this equation is a displacement, or length, and has dimensions {L}. The
equation is dimensionally homogeneous. Note also that any consistent set of units can
be used to calculate a result.
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Consider Bernoulli’s equation for incompressible flow

LA SV gz = const (5.6)
p 2
Each term, including the constant, has dimensions of velocity squared, or {LZT_Z}.
The equation is dimensionally homogeneous and gives proper results for any consis-
tent set of units.

Students count on dimensional homogeneity and use it to check themselves when
they cannot quite remember an equation during an exam. For example, which is it:

S=13g*? or §S=4g17 (5.7)

By checking the dimensions, we reject the second form and back up our faulty mem-
ory. We are exploiting the principle of dimensional homogeneity, and this chapter sim-
ply exploits it further.

Equations (5.5) and (5.6) also illustrate some other factors that often enter into a di-
mensional analysis:

Dimensional variables are the quantities which actually vary during a given case
and would be plotted against each other to show the data. In Eq. (5.5), they are
S and #; in Eq. (5.6) they are p, V, and z. All have dimensions, and all can be
nondimensionalized as a dimensional-analysis technique.

Dimensional constants may vary from case to case but are held constant during a
given run. In Eq. (5.5) they are Sy, Vj, and g, and in Eq. (5.6) they are p, g,
and C. They all have dimensions and conceivably could be nondimensional-
ized, but they are normally used to help nondimensionalize the variables in the
problem.

Pure constants have no dimensions and never did. They arise from mathematical
manipulations. In both Egs. (5.5) and (5.6) they are 5 and the exponent 2, both
of which came from an integration: [7dt = 12, [ VdV = V2. Other common
dimensionless constants are 7 and e.

Note that integration and differentiation of an equation may change the dimensions
but not the homogeneity of the equation. For example, integrate or differentiate
Eq. (5.5):

f Sdt = St + sVor* + g (5.8a)
ds
= =V, + gt 5.8b
dt 0T & ( )

In the integrated form (5.8a) every term has dimensions of {LT}, while in the deriva-
tive form (5.8b) every term is a velocity {LT~'}.

Finally, there are some physical variables that are naturally dimensionless by virtue
of their definition as ratios of dimensional quantities. Some examples are strain (change
in length per unit length), Poisson’s ratio (ratio of transverse strain to longitudinal strain),
and specific gravity (ratio of density to standard water density). All angles are dimen-
sionless (ratio of arc length to radius) and should be taken in radians for this reason.

The motive behind dimensional analysis is that any dimensionally homogeneous
equation can be written in an entirely equivalent nondimensional form which is more
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Ambiguity: The Choice of
Variables and Scaling Parameters"

compact. Usually there is more than one method of presenting one’s dimensionless data
or theory. Let us illustrate these concepts more thoroughly by using the falling-body
relation (5.5) as an example.

Equation (5.5) is familiar and simple, yet illustrates most of the concepts of dimen-
sional analysis. It contains five terms (S, So, Vo, t, g) which we may divide, in our think-
ing, into variables and parameters. The variables are the things which we wish to plot,
the basic output of the experiment or theory: in this case, S versus ¢. The parameters
are those quantities whose effect upon the variables we wish to know: in this case S,
Vo, and g. Almost any engineering study can be subdivided in this manner.

To nondimensionalize our results, we need to know how many dimensions are con-
tained among our variables and parameters: in this case, only two, length {L} and time
{T}. Check each term to verify this:

{S}={So} =1{L} {0} ={T} {Vo}={LT™'}  {g}={LT?}

Among our parameters, we therefore select two to be scaling parameters, used to de-
fine dimensionless variables. What remains will be the “basic” parameter(s) whose ef-
fect we wish to show in our plot. These choices will not affect the content of our data,
only the form of their presentation. Clearly there is ambiguity in these choices, some-
thing that often vexes the beginning experimenter. But the ambiguity is deliberate. Its
purpose is to show a particular effect, and the choice is yours to make.

For the falling-body problem, we select any two of the three parameters to be scal-
ing parameters. Thus we have three options. Let us discuss and display them in turn.

Option 1: Scaling parameters Sy and V: the effect of gravity g.
First use the scaling parameters (S, Vj) to define dimensionless (*) displacement
and time. There is only one suitable definition for each:?
P R 59
So So
Substitute these variables into Eq. (5.5) and clean everything up until each term is di-
mensionless. The result is our first option:

St =141+ Lo g= g—Sz" (5.10)
2 Vo

This result is shown plotted in Fig. 5.1a. There is a single dimensionless parameter «,
which shows here the effect of gravity. It cannot show the direct effects of Sy and V,
since these two are hidden in the ordinate and abscissa. We see that gravity increases
the parabolic rate of fall for #* > 0, but not the initial slope at * = 0. We would learn
the same from falling-body data, and the plot, within experimental accuracy, would
look like Fig. 5.1a.

T am indebted to Prof. Jacques Lewalle of Syracuse University for suggesting, outlining, and clarify-
ing this entire discussion.

2 Make them proportional to S and z. Do not define dimensionless terms upside down: Sy/S or So/(V?).
The plots will look funny, users of your data will be confused, and your supervisor will be angry. It is not
a good idea.



Fig. 5.1 Three entirely equivalent
dimensionless presentations of the
falling-body problem, Eq. (5.5): the
effect of (a) gravity, (b) initial dis-
placement, and (c) initial velocity.
All plots contain the same informa-
tion.
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§i=

()

Sk

e = 1g/S,
(©

Option 2: Scaling parameters V; and g: the effect of initial displacement Sy.
Now use the new scaling parameters (V,, g) to define dimensionless (**) displace-
ment and time. Again there is only one suitable definition:

S—zg prx = 15 (5.11)
0 0

Sk =

Substitute these variables into Eq. (5.5) and clean everything up again. The result is

our second option:
St% =+ i b g g = 850 (5.12)
2 V2
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This result is plotted in Fig. 5.1b. The same single parameter « again appears and here
shows the effect of initial displacement, which merely moves the curves upward with-
out changing their shape.

Option 3: Scaling parameters S, and g: the effect of initial speed V,.
Finally use the scaling parameters (S,, g) to define dimensionless (***) displace-
ment and time. Again there is only one suitable definition:
12
Gk = S prx = o[ S (5.13)
So So
Substitute these variables into Eq. (5.5) and clean everything up as usual. The result
is our third and final option:

1o 1 Vo
Sk = | 4 Bk 4 —pkokek = — = 5.14
k 2 F=a VS, (>-19)

This final presentation is shown in Fig. 5.1¢. Once again the parameter « appears, but
we have redefined it upside down, B = 1/Va, so that our display parameter Vj, is in
the numerator and is linear. This is our free choice and simply improves the display.
Figure 5.1¢ shows that initial velocity increases the falling displacement and that the
increase is proportional to time.

Note that, in all three options, the same parameter « appears but has a different
meaning: dimensionless gravity, initial displacement, and initial velocity. The graphs,
which contain exactly the same information, change their appearance to reflect these
differences.

Whereas the original problem, Eq. (5.5), involved five quantities, the dimensionless
presentations involve only three, having the form

S" = fen(t', @) a= g_.S'20 (5.15)
Vo
The reduction 5 — 3 = 2 should equal the number of fundamental dimensions involved
in the problem {L, T}. This idea led to the pi theorem (Sec. 5.3).

The choice of scaling variables is left to the user, and the resulting dimensionless
parameters have differing interpretations. For example, in the dimensionless drag-force
formulation, Eq. (5.2), it is now clear that the scaling parameters were p, V, and L,
since they appear in both the drag coefficient and the Reynolds number. Equation (5.2)
can thus be interpreted as the variation of dimensionless force with dimensionless vis-
cosity, with the scaling-parameter effects mixed between Cr and Re and therefore not
immediately evident.

Suppose that we wish to study drag force versus velocity. Then we would not use
V as a scaling parameter. We would use (p, w, L) instead, and the final dimensionless
function would become

cr=PE —fnRe) Re=2YL (5.16)
I

In plotting these data, we would not be able to discern the effect of p or u, since they
appear in both dimensionless groups. The grouping C;- again would mean dimension-
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less force, and Re is now interpreted as either dimensionless velocity or size.” The plot
would be quite different compared to Eq. (5.2), although it contains exactly the same
information. The development of parameters such as Cr and Re from the initial vari-
ables is the subject of the pi theorem (Sec. 5.3).

The foundation of the dimensional-analysis method rests on two assumptions: (1) The
proposed physical relation is dimensionally homogeneous, and (2) all the relevant vari-
ables have been included in the proposed relation.

If a relevant variable is missing, dimensional analysis will fail, giving either alge-
braic difficulties or, worse, yielding a dimensionless formulation which does not re-
solve the process. A typical case is Manning’s open-channel formula, discussed in Ex-
ample 1.4:

V= ﬁRmSuz )
n
Since V is velocity, R is a radius, and n and S are dimensionless, the formula is not di-
mensionally homogeneous. This should be a warning that (1) the formula changes if the
units of V and R change and (2) if valid, it represents a very special case. Equation (1)
in Example 1.4 (see above) predates the dimensional-analysis technique and is valid
only for water in rough channels at moderate velocities and large radii in BG units.

Such dimensionally inhomogeneous formulas abound in the hydraulics literature.
Another example is the Hazen-Williams formula [30] for volume flow of water through
a straight smooth pipe

d 0.54
0= 61.902-63(—1’) (5.17)
dx
where D is diameter and dp/dx is the pressure gradient. Some of these formulas arise
because numbers have been inserted for fluid properties and other physical data into
perfectly legitimate homogeneous formulas. We shall not give the units of Eq. (5.17)
to avoid encouraging its use.

On the other hand, some formulas are “constructs” which cannot be made dimen-
sionally homogeneous. The “variables” they relate cannot be analyzed by the dimen-
sional-analysis technique. Most of these formulas are raw empiricisms convenient to a
small group of specialists. Here are three examples:

25,000
= &Y 5.18
100 — R ( )
140

S=—"-"—"— 5.19
130 + API ( )
0.0147Dg — 3.74 _ 0.261 — 172 (5.20)

Dg Ig

Equation (5.18) relates the Brinell hardness B of a metal to its Rockwell hardness R.
Equation (5.19) relates the specific gravity S of an oil to its density in degrees API.

3 We were lucky to achieve a size effect because in this case L, a scaling parameter, did not appear in
the drag coefficient.
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5.3 The Pi Theorem

Equation (5.20) relates the viscosity of a liquid in Dg, or degrees Engler, to its vis-
cosity fz in Saybolt seconds. Such formulas have a certain usefulness when commu-
nicated between fellow specialists, but we cannot handle them here. Variables like
Brinell hardness and Saybolt viscosity are not suited to an MLT® dimensional system.

There are several methods of reducing a number of dimensional variables into a smaller
number of dimensionless groups. The scheme given here was proposed in 1914 by
Buckingham [29] and is now called the Buckingham pi theorem. The name pi comes
from the mathematical notation II, meaning a product of variables. The dimensionless
groups found from the theorem are power products denoted by II;, Il,, 113, etc. The
method allows the pis to be found in sequential order without resorting to free expo-
nents.
The first part of the pi theorem explains what reduction in variables to expect:

If a physical process satisfies the PDH and involves n dimensional variables, it can
be reduced to a relation between only k dimensionless variables or IT’s. The reduc-
tion j = n — k equals the maximum number of variables which do not form a pi
among themselves and is always less than or equal to the number of dimensions de-
scribing the variables.

Take the specific case of force on an immersed body: Eq. (5.1) contains five variables
F, L, U, p, and u described by three dimensions {MLT}. Thus n = 5 and j = 3. There-
fore it is a good guess that we can reduce the problem to k pis, withk=n —j =5 —
3 = 2. And this is exactly what we obtained: two dimensionless variables I1; = Cr and
I1, = Re. On rare occasions it may take more pis than this minimum (see Example
5.5).

The second part of the theorem shows how to find the pis one at a time:

Find the reduction j, then select j scaling variables which do not form a pi among
themselves.* Each desired pi group will be a power product of these j variables plus
one additional variable which is assigned any convenient nonzero exponent. Each
pi group thus found is independent.

To be specific, suppose that the process involves five variables

Y :f(v29 W3, Uy, US)

Suppose that there are three dimensions {MLT} and we search around and find that in-
deed j = 3. Then k =5 — 3 = 2 and we expect, from the theorem, two and only two
pi groups. Pick out three convenient variables which do not form a pi, and suppose
these turn out to be v, 13, and vy. Then the two pi groups are formed by power prod-
ucts of these three plus one additional variable, either v; or vs:

I1, = ()W) (w)v = ML°T° 11, = (1)“(v3)"(vy)vs = M°LOT°

Here we have arbitrarily chosen v; and vs, the added variables, to have unit exponents.
Equating exponents of the various dimensions is guaranteed by the theorem to give
unique values of a, b, and ¢ for each pi. And they are independent because only II;

4 Make a clever choice here because all pis will contain these j variables in various groupings.
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Dimensions

Quantity Symbol MLTO® FLT®
Length L L L
Area A L? L’
Volume Vv L3 L3
Velocity % LT™! LT™!
Acceleration dvildt LT LT™2
Speed of sound a LT™! LT!
Volume flow 0 L’r! L’r!
Mass flow i MT™! FTL™!
Pressure, stress p, T ML™'T? FL™?
Strain rate é ! 7!
Angle 0 None None
Angular velocity 9} 7! 77!
Viscosity n ML7'T! FTL™?
Kinematic viscosity v L’T™! L’T™!
Surface tension Y MT™? FL™!
Force F MLT™? F
Moment, torque M ML*T? FL
Power P ML*T™ FLT™!
Work, energy W, E ML*T? FL
Density p ML> FT?L™
Temperature T (C] (S}
Specific heat Cps Cy L’T?07! L’T 207!
Specific weight Y ML?>T ™2 FL™3
Thermal conductivity k MLT>0™! FT'0™!
Expansion coefficient B 0! 0!

contains v; and only II, contains vs. It is a very neat system once you get used to the
procedure. We shall illustrate it with several examples.
Typically, six steps are involved:

1. List and count the n variables involved in the problem. If any important vari-
ables are missing, dimensional analysis will fail.

2. List the dimensions of each variable according to {MLT®} or {FLTO}. A list is
given in Table 5.1.

3. Find . Initially guess j equal to the number of different dimensions present, and
look for j variables which do not form a pi product. If no luck, reduce j by 1
and look again. With practice, you will find j rapidly.

4. Select j scaling parameters which do not form a pi product. Make sure they
please you and have some generality if possible, because they will then appear
in every one of your pi groups. Pick density or velocity or length. Do not pick
surface tension, e.g., or you will form six different independent Weber-number
parameters and thoroughly annoy your colleagues.

5. Add one additional variable to your j repeating variables, and form a power
product. Algebraically find the exponents which make the product dimension-
less. Try to arrange for your output or dependent variables (force, pressure drop,
torque, power) to appear in the numerator, and your plots will look better. Do
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Step 1

Step 2

Step 3

Step 4

Step 5

this sequentially, adding one new variable each time, and you will find all
n — j = k desired pi products.

6. Write the final dimensionless function, and check your work to make sure all pi
groups are dimensionless.

EXAMPLE 5.2

Repeat the development of Eq. (5.2) from Eq. (5.1), using the pi theorem.

Solution

Write the function and count variables:
F=f(L, U, p, u) there are five variables (n = 5)
List dimensions of each variable. From Table 5.1
N U R R

{MLT?} | {L} | (LT~} | {ML™3} | (ML™'T™Y}

Find j. No variable contains the dimension ©, and so j is less than or equal to 3 (MLT). We in-
spect the list and see that L, U, and p cannot form a pi group because only p contains mass and
only U contains time. Therefore j does equal 3, and n —j =5 — 3 = 2 = k. The pi theorem
guarantees for this problem that there will be exactly two independent dimensionless groups.

Select repeating j variables. The group L, U, p we found in step 3 will do fine.

Combine L, U, p with one additional variable, in sequence, to find the two pi products.

First add force to find I1,. You may select any exponent on this additional term as you please,
to place it in the numerator or denominator to any power. Since F' is the output, or dependent,
variable, we select it to appear to the first power in the numerator:

II, = L“UPp°F = (L)Y(LTHY(ML™3°( MLT~?) = M°L°T°

Equate exponents:

Length: atb—3c+1=0
Mass: ct+1=0
Time: —b —2=0

We can solve explicitly for

Therefore

I, =L2U% 'F= =Cp Ans.

_F
pUPL?
This is exactly the right pi group as in Eq. (5.2). By varying the exponent on F, we could have
found other equivalent groups such as ULp"%/F"2.



5.3 The Pi Theorem 289

Finally, add viscosity to L, U, and p to find II,. Select any power you like for viscosity. By
hindsight and custom, we select the power —1 to place it in the denominator:

I, = L*UPp ™" = LYLT YoML™ ML '~ = M°LOT°

Equate exponents:

Length: at+tb—-3c+1=0
Mass: c—1=0
Time: —-b +1=0

from which we find

a=b=c=1
Therefore IL, =L'U'p'n ! = pUL _ Re Ans.
w

We know we are finished; this is the second and last pi group. The theorem guarantees that the
functional relationship must be of the equivalent form

r__ g<ﬂ> Ans.

pUL? n

which is exactly Eq. (5.2).

EXAMPLE 5.3

Reduce the falling-body relationship, Eq. (5.5), to a function of dimensionless variables. Why
are there three different formulations?

Solution

Write the function and count variables
S = f(t, So, Vo, g) five variables (n = 5)

List the dimensions of each variable, from Table 5.1:

s | s | | e

{L} | (T} | {L} | LT "} | {(LT™2}

There are only two primary dimensions (L, T), so that j = 2. By inspection we can easily
find two variables which cannot be combined to form a pi, for example, V, and g. Then j =
2, and we expect 5 — 2 = 3 pi products. Select j variables among the parameters Sy, Vj, and
g. Avoid S and ¢ since they are the dependent variables, which should not be repeated in pi
groups.

There are three different options for repeating variables among the group (Sy, Vo, g). There-
fore we can obtain three different dimensionless formulations, just as we did informally with the
falling-body equation in Sec. 5.2. Take each option in turn:
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1.

Choose Sy and V|, as repeating variables. Combine them in turn with (S, 7, g):
I, = S'SgVe T, = S§ve Tl = 'SV
Set each power product equal to L°7°, and solve for the exponents (a, b, ¢, d, e, f). Please
allow us to give the results here, and you may check the algebra as an exercise:
a=—-1 b=0 c=-1 d=1 e=1 f=-2

2So Ans.
I, = §% = = === [[=q=2°0

1 So 2 So 3= o V%

Thus, for option 1, we know that §* = fen(#*, a). We have found, by dimensional analy-
sis, the same variables as in Eq. (5.10). But here there is no formula for the functional re-
lation — we might have to experiment with falling bodies to establish Fig. 5.1a.

Choose V; and g as repeating variables. Combine them in turn with (S, ¢, Sp):
I, = S'Vég® Tl =1'Vig? TI; = Siveg

Set each power product equal to L°7°, and solve for the exponents (a, b, c, d, e, f). Once
more allow us to give the results here, and you may check the algebra as an exercise.

a=-2 b=1 c=~-1 d=1 e=1 f=-2

Ans.
HIZS**:S_% szt**:t_g H3=C¥=g_sz()
Vo Vo Vo

Thus, for option 2, we now know that $** = fen(r**, ). We have found, by dimensional
analysis, the same groups as in Eq. (5.12). The data would plot as in Fig. 5.1b.

Finally choose Sy and g as repeating variables. Combine them in turn with (S, ¢, Vj):
I, = §'Sgg" T, =1'S5g? Tl = VSt

Set each power product equal to L°T°, and solve for the exponents (a, b, ¢, d, e, f). One
more time allow us to give the results here, and you may check the algebra as an exercise:

r 1 1 1
a=-1 b=0 c=—" f=-"

=72 e=—)

s v,
I, = Seee = 2 H—t***—t/ I;=p=—/"
1 So 2 0 3 B 1/gS0

Thus, for option 3, we now know that §*** = fcn(##%*, B = 1/\/5). We have found, by di-
mensional analysis, the same groups as in Eq. (5.14). The data would plot as in Fig. 5.1c.

Dimensional analysis here has yielded the same pi groups as the use of scaling parameters

with Eq. (5.5). Three different formulations appeared, because we could choose three different
pairs of repeating variables to complete the pi theorem.

EXAMPLE 54

At low velocities (laminar flow), the volume flow Q through a small-bore tube is a function only
of the tube radius R, the fluid viscosity u, and the pressure drop per unit tube length dp/dx. Us-
ing the pi theorem, find an appropriate dimensionless relationship.
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Solution

Write the given relation and count variables:
_ dp . -
0 =f(R, 1, I four variables (n = 4)
by

Make a list of the dimensions of these variables from Table 5.1:

0 | R | I | dpldx

(L3171} | {L} | (ML™'T™1) | {ML™T™%)

There are three primary dimensions (M, L, T), hence j = 3. By trial and error we determine that
R, u, and dp/dx cannot be combined into a pi group. Thenj = 3, and n —j =4 — 3 = 1. There
is only one pi group, which we find by combining Q in a power product with the other three:

Hl — Ra/""’(Z_Z)CQ] — (L)a(ML*IT*])h(ML72T72)C(L3T7I)

= M°L°7°
Equate exponents:
Mass: b+ ¢ =0
Length: a—b—2c+3=0
Time: —-b—2c—1=0
Solving simultaneously, we obtain a = —4, b = 1, ¢ = —1. Then
-1
m= kw5 e
dx
__ Op _
or IT, = R4(dp/d—x) = const Ans.

Since there is only one pi group, it must equal a dimensionless constant. This is as far as dimensional
analysis can take us. The laminar-flow theory of Sec. 6.4 shows that the value of the constant is 7/8.

EXAMPLE 5.5

Assume that the tip deflection & of a cantilever beam is a function of the tip load P, beam length
L, area moment of inertia /, and material modulus of elasticity E; that is, & = f(P, L, I, E). Rewrite
this function in dimensionless form, and comment on its complexity and the peculiar value of j.

Solution

List the variables and their dimensions:

s | e | ¢ | 1 | E

{L} | {MLT 2} | {L} | {L*} | (ML™'T™?}
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5.4 Nondimensionalization of
the Basic Equations

There are five variables (n = 5) and three primary dimensions (M, L, T), hence j = 3. But try as
we may, we cannot find any combination of three variables which does not form a pi group.
This is because {M} and {T} occur only in P and E and only in the same form, {MT ~2}. Thus
we have encountered a special case of j = 2, which is less than the number of dimensions (M,
L, T). To gain more insight into this peculiarity, you should rework the problem, using the (F,
L, T) system of dimensions.

With j = 2, we select L and E as two variables which cannot form a pi group and then add
other variables to form the three desired pis:

I, = L°E°I' = (L)*(ML™'T~ 3> = M°L°T°
from which, after equating exponents, we find that a = —4, b = 0, or [, = I/L*. Then
I, = L“E°P! = (L)*ML™'T>P(MLT~? = M°L°T°
from which we finda = -2, b= —1,orIl, = P/(ELZ), and
Il; = LYEP8' = (LML 'T~?%(L) = M°L°T°

from which a = —1, b = 0, or I3 = &/L. The proper dimensionless function is II; = f(IL,, I1;),
or

5 P oI
2 f(ﬁ’ F) Ans. (1)

This is a complex three-variable function, but dimensional analysis alone can take us no further.

We can “improve” Eq. (1) by taking advantage of some physical reasoning, as Langhaar
points out [8, p. 91]. For small elastic deflections, & is proportional to load P and inversely
proportional to moment of inertia /. Since P and / occur separately in Eq. (1), this means
that I1; must be proportional to I, and inversely proportional to Il;. Thus, for these con-
ditions,

é — (COnSt) L L_4
L EL* I
PL?
6= t) —— 2
or (const) £l 2)

This could not be predicted by a pure dimensional analysis. Strength-of-materials theory pre-
dicts that the value of the constant is +.

We could use the pi-theorem method of the previous section to analyze problem after
problem after problem, finding the dimensionless parameters which govern in each
case. Textbooks on dimensional analysis [for example, 7] do this. An alternate and very
powerful technique is to attack the basic equations of flow from Chap. 4. Even though
these equations cannot be solved in general, they will reveal basic dimensionless pa-
rameters, e.g., Reynolds number, in their proper form and proper position, giving clues
to when they are negligible. The boundary conditions must also be nondimensional-
ized.

Let us briefly apply this technique to the incompressible-flow continuity and mo-
mentum equations with constant viscosity:

Continuity: V-v=0 (5.21a)
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Momentum: p% = pg — Vp + uV?V (5.21b)
Typical boundary conditions for these two equations are

Fixed solid surface: V=0

Inlet or outlet: Known V, p (5.22)
Free surface, z = w= 62—? P=p.— YR, '+ Ry_l)

We omit the energy equation (4.75) and assign its dimensionless form in the problems
(Probs. 5.42 and 5.45).

Equations (5.21) and (5.22) contain the three basic dimensions M, L, and T. All vari-
ables p, V, x, y, z, and ¢ can be nondimensionalized by using density and two refer-
ence constants which might be characteristic of the particular fluid flow:

Reference velocity = U Reference length = L

For example, U may be the inlet or upstream velocity and L the diameter of a body
immersed in the stream.
Now define all relevant dimensionless variables, denoting them by an asterisk:

ve =Y

U
% = (5.23)

yE = <
L

3
L
p=1U P Fpgz

L pU?
All these are fairly obvious except for p*, where we have slyly introduced the gravity
effect, assuming that z is up. This is a hindsight idea suggested by Bernoulli’s equa-
tion (3.77).
Since p, U, and L are all constants, the derivatives in Eqs. (5.21) can all be handled
in dimensionless form with dimensional coefficients. For example,

du _ oUu*) _ U Ju*
ax A(Lx*) L ox*
Substitute the variables from Eqs. (5.23) into Egs. (5.21) and (5.22) and divide through

by the leading dimensional coefficient, in the same way as we handled Eq. (5.12). The
resulting dimensionless equations of motion are:

Continuity: Vi . Vi = () (5.24a)
Momentum: iv— = —Vip* + g2y (5.24b)
dr* pUL

The dimensionless boundary conditions are:
Fixed solid surface: V=0

Inlet or outlet: Known V*, p*
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Dimensionless Parameters

Free surface, z* = n*: w#* = di (5.25)
dr*
l):;: — 7/)4177 + ili;:::: o ),, (R:i: 1 + Ri:: l)
pU~ U~ pU"L :

These equations reveal a total of four dimensionless parameters, one in the momentum
equation and three in the free-surface-pressure boundary condition.

In the continuity equation there are no parameters. The momentum equation contains
one, generally accepted as the most important parameter in fluid mechanics:

_ pUL
n

Reynolds number Re

It is named after Osborne Reynolds (1842—1912), a British engineer who first proposed
it in 1883 (Ref. 4 of Chap. 6). The Reynolds number is always important, with or with-
out a free surface, and can be neglected only in flow regions away from high-velocity
gradients, e.g., away from solid surfaces, jets, or wakes.

The no-slip and inlet-exit boundary conditions contain no parameters. The free-
surface-pressure condition contains three:

Euler number (pressure coefficient) Eu = p(‘]‘z
p

This is named after Leonhard Euler (1707—1783) and is rarely important unless the
pressure drops low enough to cause vapor formation (cavitation) in a liquid. The Euler
number is often written in terms of pressure differences: Eu = Ap/(pU?). If Ap involves
vapor pressure p,, it is called the cavitation number Ca = (p, — p)/(pU?).

The second pressure parameter is much more important:

2

Froude number Fr = —
gL

It is named after William Froude (1810-1879), a British naval architect who, with his
son Robert, developed the ship-model towing-tank concept and proposed similarity
rules for free-surface flows (ship resistance, surface waves, open channels). The Froude
number is the dominant effect in free-surface flows and is totally unimportant if there
is no free surface. Chapter 10 investigates Froude number effects in detail.

The final free-surface parameter is

_ pU°L

Weber number We Y

It is named after Moritz Weber (1871-1951) of the Polytechnic Institute of Berlin, who
developed the laws of similitude in their modern form. It was Weber who named Re
and Fr after Reynolds and Froude. The Weber number is important only if it is of or-
der unity or less, which typically occurs when the surface curvature is comparable in
size to the liquid depth, e.g., in droplets, capillary flows, ripple waves, and very small
hydraulic models. If We is large, its effect may be neglected.
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If there is no free surface, Fr, Eu, and We drop out entirely, except for the possi-
bility of cavitation of a liquid at very small Eu. Thus, in low-speed viscous flows with
no free surface, the Reynolds number is the only important dimensionless parameter.

In high-speed flow of a gas there are significant changes in pressure, density, and tem-
perature which must be related by an equation of state such as the perfect-gas law,
Eq. (1.10). These thermodynamic changes introduce two additional dimensionless pa-
rameters mentioned briefly in earlier chapters:

Mach number Ma = v Specific-heat ratio k = v

a Cy

The Mach number is named after Ernst Mach (1838—1916), an Austrian physicist. The

effect of k is only slight to moderate, but Ma exerts a strong effect on compressible-
flow properties if it is greater than about 0.3. These effects are studied in Chap. 9.

If the flow pattern is oscillating, a seventh parameter enters through the inlet bound-
ary condition. For example, suppose that the inlet stream is of the form

u = U cos wt

Nondimensionalization of this relation results in
u wlL
— = y* = cos| —+*
U U

The argument of the cosine contains the new parameter

Strouhal number St = oL

The dimensionless forces and moments, friction, and heat transfer, etc., of such an os-
cillating flow would be a function of both Reynolds and Strouhal numbers. This param-
eter is named after V. Strouhal, a German physicist who experimented in 1878 with
wires singing in the wind.

Some flows which you might guess to be perfectly steady actually have an oscilla-
tory pattern which is dependent on the Reynolds number. An example is the periodic
vortex shedding behind a blunt body immersed in a steady stream of velocity U. Fig-
ure 5.2a shows an array of alternating vortices shed from a circular cylinder immersed
in a steady crossflow. This regular, periodic shedding is called a Kdrmdn vortex street,
after T. von Karman, who explained it theoretically in 1912. The shedding occurs in
the range 10> < Re < 107, with an average Strouhal number wd/(27U) =~ 0.21. Figure
5.2b shows measured shedding frequencies.

Resonance can occur if a vortex shedding frequency is near a body’s structural-
vibration frequency. Electric transmission wires sing in the wind, undersea mooring
lines gallop at certain current speeds, and slender structures flutter at critical wind or
vehicle speeds. A striking example is the disastrous failure of the Tacoma Narrows sus-
pension bridge in 1940, when wind-excited vortex shedding caused resonance with the
natural torsional oscillations of the bridge.
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Fig. 5.2 Vortex shedding from a
circular cylinder: (a) vortex street
behind a circular cylinder (from
Ref. 33, courtesy of U.S. Naval Re-
search Laboratory); (b) experimen-
tal shedding frequencies (data
from Refs. 31 and 32).

Other Dimensionless Parameters

0.4

Data spread

\

0 [ [ [ [ [
10 102 103 104 10° 10° 107

_ pud
T ou
(b)

Re

We have discussed seven important parameters in fluid mechanics, and there are oth-
ers. Four additional parameters arise from nondimensionalization of the energy equa-
tion (4.75) and its boundary conditions. These four (Prandtl number, Eckert number,
Grashof number, and wall-temperature ratio) are listed in Table 5.2 just in case you fail
to solve Prob. 5.42. Another important and rather sneaky parameter is the wall-
roughness ratio €/L (in Table 5.2).° Slight changes in surface roughness have a strik-

5 Roughness is easy to overlook because it is a slight geometric effect which does not appear in the
equations of motion.
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Fluid Mechanics
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Qualitative ratio

Parameter Definition of effects Importance
Reynolds number Re = pUL I'neim.a Always
w Viscosity
Mach number Ma = v % Compressible flow
a ound spee:
2 .
Froude number Fr= LL (I}m:_rt;a Free-surface flow
g ravity
2 .
‘Weber number We = pUL Lm, Free-surface flow
Y Surface tension
Cavitation number Ca=Ll" f v HLSL_HC Cavitation
(Euler number) pU Inertia
Prandtl number Pr= % CDISS(QW Heat convection
onduction
2 L
Eckert number Ec = u Kinetic energy Dissipation
¢, To Enthalpy
C
Specific-heat ratio k= c—p % Compressible flow
v nternal energy
Strouhal number St = w—; &Lanor; Oscillating flow
ean spee
Roughness ratio f W Turbulent, rough walls
ody leng
32
Grashof number Gr = ,BATgZL £ ]z;i:cy(?srig Natural convection
w

Temperature ratio

Pressure coefficient

Lift coefficient

Drag coefficient

I,
Ty
_ PP
G = ipUz
L
CL: 1 2
2pUA
D
CD:I 2
2pUA

Wall temperature

Stream temperature
Static pressure

Dynamic pressure

Lift force
Dynamic force

Drag force
Dynamic force

Heat transfer

Aerodynamics, hydrodynamics

Aerodynamics, hydrodynamics

Aerodynamics, hydrodynamics

ing effect in the turbulent-flow or high-Reynolds-number range, as we shall see in Chap.

6 and in Fig. 5.3.

This book is primarily concerned with Reynolds-, Mach-, and Froude-number ef-
fects, which dominate most flows. Note that we discovered all these parameters (ex-
cept €/L) simply by nondimensionalizing the basic equations without actually solving

them.

If the reader is not satiated with the 15 parameters given in Table 5.2, Ref. 34 con-
tains a list of over 300 dimensionless parameters in use in engineering. See also

Ref. 35.
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A Successful Application

Fig. 5.3 The proof of practical di-
mensional analysis: drag coeffi-
cients of a cylinder and sphere:
(a) drag coefficient of a smooth
cylinder and sphere (data from
many sources); (b) increased
roughness causes earlier transition
to a turbulent boundary layer.

Dimensional analysis is fun, but does it work? Yes; if all important variables are in-
cluded in the proposed function, the dimensionless function found by dimensional
analysis will collapse all the data onto a single curve or set of curves.

An example of the success of dimensional analysis is given in Fig. 5.3 for the mea-
sured drag on smooth cylinders and spheres. The flow is normal to the axis of the cylin-
der, which is extremely long, L/d — . The data are from many sources, for both lig-
uids and gases, and include bodies from several meters in diameter down to fine wires
and balls less than 1 mm in size. Both curves in Fig. 5.3a are entirely experimental;
the analysis of immersed body drag is one of the weakest areas of modern fluid-
mechanics theory. Except for some isolated digital-computer calculations, there is no
theory for cylinder and sphere drag except creeping flow, Re < 1.

The Reynolds number of both bodies is based upon diameter, hence the notation
Re,. But the drag coefficients are defined differently:

4 Cylinder

length effect
Transition to turbulent (10*< Re < 10%)
boundary layer
3 vd o
oo 1.20
C

P 40 098
20 0.91
2= 10 082
5 0.74
. . . 3 0.72
Cylinder (two — dimensional) > 0.68
1— 1 0.64

10 102 103 104 10° 106 107
pUd
Re;= ——
u
(a)
15
Cylinder:
10— & _
£ =002 .
Cp 0.009
0.7 = 0.007
0.5 — 0.004
B Smooth
0.0005
0.3 |
104 10° 106
Re,

(®)
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Step 1
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drag )
TJUZL P cylinder
Cp = (5.26)
drag
UL sphere

They both have a factor 5 as a traditional tribute to Bernoulli and Euler, and both are
based on the projected area, i.e., the area one sees when looking toward the body from
upstream. The usual definition of Cp, is thus

drag

(5.27)

C =
b SpU*(projected area)

However, one should carefully check the definitions of Cp, Re, etc., before using data
in the literature. Airfoils, e.g., use the planform area.

Figure 5.3a is for long, smooth cylinders. If wall roughness and cylinder length are
included as variables, we obtain from dimensional analysis a complex three-parameter
function

Cp = f(Re,,, 5’ 5) (5.28)
To describe this function completely would require 1000 or more experiments. Therefore
it is customary to explore the length and roughness effects separately to establish trends.

The table with Fig. 5.3a shows the length effect with zero wall roughness. As length
decreases, the drag decreases by up to 50 percent. Physically, the pressure is “relieved”
at the ends as the flow is allowed to skirt around the tips instead of deflecting over and
under the body.

Figure 5.3b shows the effect of wall roughness for an infinitely long cylinder. The
sharp drop in drag occurs at lower Re, as roughness causes an earlier transition to a
turbulent boundary layer on the surface of the body. Roughness has the same effect on
sphere drag, a fact which is exploited in sports by deliberate dimpling of golf balls to
give them less drag at their flight Re, =~ 10°.

Figure 5.3 is a typical experimental study of a fluid-mechanics problem, aided by
dimensional analysis. As time and money and demand allow, the complete three-
parameter relation (5.28) could be filled out by further experiments.

EXAMPLE 5.6

The capillary rise & of a liquid in a tube varies with tube diameter d, gravity g, fluid density p,
surface tension Y, and the contact angle 6. () Find a dimensionless statement of this relation.
(b) If h = 3 cm in a given experiment, what will / be in a similar case if the diameter and sur-
face tension are half as much, the density is twice as much, and the contact angle is the same?

Solution

Write down the function and count variables:

h=fd, g p Y, 0 n = 6 variables
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Step 2

Step 3

Step 4
Step 5

Step 6

Part (b)

List the dimensions {FLT} from Table 5.2:
L R N T R S R S
w |ow |owry |owrrety | oy | none

Find j. Several groups of three form no pi: Y, p, and g or p, g, and d. Therefore j = 3, and we
expect n — j = 6 — 3 = 3 dimensionless groups. One of these is obviously 6, which is already
dimensionless:

;=0 Ans. (a)
If we had carelessly chosen to search for it by using steps 4 and 5, we would still find I15 = 6.
Select j repeating variables which do not form a pi group: p, g, d.
Add one additional variable in sequence to form the pis:
Add h: I, = p"gPd°h = (FT*L™ (LT ~»(L)(L) = F°L°T°
Solve for

a=b=0 c=—1
0.0 ,—1 h
Therefore II,=p¢d 'h= ] Ans. (a)

Finally add Y, again selecting its exponent to be 1:

Hz — paghdcY — (FT2L74)¢1(LT72)h(L)C(FL71) — FOLOYO

Solve for
a=b=-1 c=-2
—1_—1 -2 Y
Therefore [,=p""¢gd Y= > Ans. (a)
pgd

The complete dimensionless relation for this problem is thus

ﬁ—FLO A 1
1 (pgdz’ ) ns. (a) (1)

This is as far as dimensional analysis goes. Theory, however, establishes that / is proportional
to Y. Since Y occurs only in the second parameter, we can slip it outside

h Y hpgd
2y =k 84 _ g
<d>actual pgd2 1( ) or Y l( )

Example 1.9 showed theoretically that F;(6) = 4 cos 6.

We are given A, for certain conditions d;, Y}, py, and 6,. If i, = 3 cm, what is &, for d, = 3d;, Y, =
3Y1, po = 2p;, and 6, = 6,2 We know the functional relation, Eq. (1), must still hold at condition 2

ﬁ:p( Y, 92)

d> p2gd3,
But

Y, Y, Y,

pgds  2pigd)’  pigds
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Therefore, functionally,

=2 = F| X 0, | =—-"+
d, <P18d12 ! d,

We are given a condition 2 which is exactly similar to condition 1, and therefore a scaling law
holds

a

&) )%d1 15 Ans. (b
= cm)—— = 1.0 Cm .
d, 4 ns. (b)

hy =y

If the pi groups had not been exactly the same for both conditions, we would have had to know
more about the functional relation F to calculate /,.

So far we have learned about dimensional homogeneity and the pi-theorem method,
using power products, for converting a homogeneous physical relation to dimension-
less form. This is straightforward mathematically, but there are certain engineering dif-
ficulties which need to be discussed.

First, we have more or less taken for granted that the variables which affect the
process can be listed and analyzed. Actually, selection of the important variables re-
quires considerable judgment and experience. The engineer must decide, e.g., whether
viscosity can be neglected. Are there significant temperature effects? Is surface tension
important? What about wall roughness? Each pi group which is retained increases the
expense and effort required. Judgment in selecting variables will come through prac-
tice and maturity; this book should provide some of the necessary experience.

Once the variables are selected and the dimensional analysis is performed, the ex-
perimenter seeks to achieve similarity between the model tested and the prototype to
be designed. With sufficient testing, the model data will reveal the desired dimension-
less function between variables

H] :f(Hz, H3, e Hk) (529)

With Eq. (5.29) available in chart, graphical, or analytical form, we are in a position
to ensure complete similarity between model and prototype. A formal statement would
be as follows:

Flow conditions for a model test are completely similar if all relevant dimensionless
parameters have the same corresponding values for the model and the prototype.

This follows mathematically from Eq. (5.29). If IL,,, = II,,, I15,, = II;,, etc., Eq. (5.29)
guarantees that the desired output II;,, will equal 11,,. But this is easier said than done,
as we now discuss.

Instead of complete similarity, the engineering literature speaks of particular types
of similarity, the most common being geometric, kinematic, dynamic, and thermal. Let
us consider each separately.

Geometric similarity concerns the length dimension {L} and must be ensured before
any sensible model testing can proceed. A formal definition is as follows:
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Fig. 5.4 Geometric similarity in
model testing: (a) prototype;
(b) one-tenth-scale model.

A model and prototype are geometrically similar if and only if all body dimensions
in all three coordinates have the same linear-scale ratio.

Note that all length scales must be the same. It is as if you took a photograph of the pro-
totype and reduced it or enlarged it until it fitted the size of the model. If the model is
to be made one-tenth the prototype size, its length, width, and height must each be one-
tenth as large. Not only that, but also its entire shape must be one-tenth as large, and
technically we speak of homologous points, which are points that have the same relative
location. For example, the nose of the prototype is homologous to the nose of the model.
The left wingtip of the prototype is homologous to the left wingtip of the model. Then
geometric similarity requires that all homologous points be related by the same linear-
scale ratio. This applies to the fluid geometry as well as the model geometry.

All angles are preserved in geometric similarity. All flow directions are preserved.
The orientations of model and prototype with respect to the surroundings must be
identical.

Figure 5.4 illustrates a prototype wing and a one-tenth-scale model. The model
lengths are all one-tenth as large, but its angle of attack with respect to the free stream
is the same: 10° not 1°. All physical details on the model must be scaled, and some
are rather subtle and sometimes overlooked:

1. The model nose radius must be one-tenth as large.

2. The model surface roughness must be one-tenth as large.

3. If the prototype has a 5-mm boundary-layer trip wire 1.5 m from the leading
edge, the model should have a 0.5-mm trip wire 0.15 m from its leading edge.

4. If the prototype is constructed with protruding fasteners, the model should have
homologous protruding fasteners one-tenth as large.

And so on. Any departure from these details is a violation of geometric similarity and
must be justified by experimental comparison to show that the prototype behavior was
not significantly affected by the discrepancy.

Models which appear similar in shape but which clearly violate geometric similar-
ity should not be compared except at your own risk. Figure 5.5 illustrates this point.

Homologous

points
N a
o T T y

10°
Vp o~ |>'|>
sm \7/ Vi A-0g m-/
(a) (b)



Fig. 5.5 Geometric similarity and
dissimilarity of flows: (@) similar;
(b) dissimilar.

Kinematic Similarity
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v, v, v, v,

Huge Large Medium Tiny
sphere sphere sphere sphere
(@)
— —— —
Large 4:1 Medium 3.5:1 Small 3:1
ellipsoid ellipsoid ellipsoid

(b)

The spheres in Fig. 5.5a are all geometrically similar and can be tested with a high ex-
pectation of success if the Reynolds number or Froude number, etc., is matched. But
the ellipsoids in Fig. 5.5b merely look similar. They actually have different linear-scale
ratios and therefore cannot be compared in a rational manner, even though they may
have identical Reynolds and Froude numbers, etc. The data will not be the same for
these ellipsoids, and any attempt to “compare” them is a matter of rough engineering
judgment.

Kinematic similarity requires that the model and prototype have the same length-scale
ratio and the same time-scale ratio. The result is that the velocity-scale ratio will be
the same for both. As Langhaar [8] states it:

The motions of two systems are kinematically similar if homologous particles lie at
homologous points at homologous times.

Length-scale equivalence simply implies geometric similarity, but time-scale equiva-
lence may require additional dynamic considerations such as equivalence of the
Reynolds and Mach numbers.

One special case is incompressible frictionless flow with no free surface, as sketched in
Fig. 5.6a. These perfect-fluid flows are kinematically similar with independent length and
time scales, and no additional parameters are necessary (see Chap. 8 for further details).

Frictionless flows with a free surface, as in Fig. 5.6b, are kinematically similar if
their Froude numbers are equal

Vi Voo

Fr,, = =——=
gL, gL,

Fr, (5.30)

Note that the Froude number contains only length and time dimensions and hence is
a purely kinematic parameter which fixes the relation between length and time. From
Eq. (5.30), if the length scale is

L, =al, (5.31)
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Fig. 5.6 Frictionless low-speed
flows are kinematically similar:

(a) Flows with no free surface are
kinematically similar with indepen-
dent length- and time-scale ratios;
(b) free-surface flows are kinemati-
cally similar with length and time
scales related by the Froude
number.

Dynamic Similarity
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where « is a dimensionless ratio, the velocity scale is

/2
Vo = ()™ = v (5.32)
v, L,
and the time scale is T LV
—m = =Va (5.33)
T, L)V,

These Froude-scaling kinematic relations are illustrated in Fig. 5.6b for wave-motion
modeling. If the waves are related by the length scale «, then the wave period, propa-
gation speed, and particle velocities are related by Va.

If viscosity, surface tension, or compressibility is important, kinematic similarity is
dependent upon the achievement of dynamic similarity.

Dynamic similarity exists when the model and the prototype have the same length-
scale ratio, time-scale ratio, and force-scale (or mass-scale) ratio. Again geometric sim-



Discrepancies in Water and Air
Testing

Fig. 5.7 Dynamic similarity in
sluice-gate flow. Model and proto-
type yield identical homologous
force polygons if the Reynolds and
Froude numbers are the same cor-
responding values: (a) prototype;
(b) model.
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ilarity is a first requirement; without it, proceed no further. Then dynamic similarity
exists, simultaneous with kinematic similarity, if the model and prototype force and
pressure coefficients are identical. This is ensured if:

1. For compressible flow, the model and prototype Reynolds number and Mach
number and specific-heat ratio are correspondingly equal.

2. For incompressible flow
a. With no free surface: model and prototype Reynolds numbers are equal.

b. With a free surface: model and prototype Reynolds number, Froude number, and
(if necessary) Weber number and cavitation number are correspondingly equal.

Mathematically, Newton’s law for any fluid particle requires that the sum of the pres-
sure force, gravity force, and friction force equal the acceleration term, or inertia force,

F, +F,+F,=F,

The dynamic-similarity laws listed above ensure that each of these forces will be in the
same ratio and have equivalent directions between model and prototype. Figure 5.7 shows
an example for flow through a sluice gate. The force polygons at homologous points have
exactly the same shape if the Reynolds and Froude numbers are equal (neglecting surface
tension and cavitation, of course). Kinematic similarity is also ensured by these model laws.

The perfect dynamic similarity shown in Fig. 5.7 is more of a dream than a reality be-
cause true equivalence of Reynolds and Froude numbers can be achieved only by dra-
matic changes in fluid properties, whereas in fact most model testing is simply done
with water or air, the cheapest fluids available.

First consider hydraulic model testing with a free surface. Dynamic similarity re-
quires equivalent Froude numbers, Eq. (5.30), and equivalent Reynolds numbers

Vil _ Vol

v, v,

(5.34)

| <

/

(a) ®)
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Fig. 5.8 Reynolds-number extrapo-
lation, or scaling, of hydraulic data
with equal Froude numbers.

But both velocity and length are constrained by the Froude number, Eqgs. (5.31) and
(5.32). Therefore, for a given length-scale ratio «, Eq. (5.34) is true only if

L O N (5.35)
Yp L, V,

For example, for a one-tenth-scale model, & = 0.1 and o> = 0.032. Since v, is un-
doubtedly water, we need a fluid with only 0.032 times the kinematic viscosity of wa-
ter to achieve dynamic similarity. Referring to Table 1.4, we see that this is impossi-
ble: Even mercury has only one-ninth the kinematic viscosity of water, and a mercury
hydraulic model would be expensive and bad for your health. In practice, water is used
for both the model and the prototype, and the Reynolds-number similarity (5.34) is un-
avoidably violated. The Froude number is held constant since it is the dominant
parameter in free-surface flows. Typically the Reynolds number of the model flow is
too small by a factor of 10 to 1000. As shown in Fig. 5.8, the low-Reynolds-number
model data are used to estimate by extrapolation the desired high-Reynolds-number
prototype data. As the figure indicates, there is obviously considerable uncertainty in
using such an extrapolation, but there is no other practical alternative in hydraulic model
testing.

Second, consider aerodynamic model testing in air with no free surface. The im-
portant parameters are the Reynolds number and the Mach number. Equation (5.34)
should be satisfied, plus the compressibility criterion

v,
Vo _ 2 (5.36)
a,, a,

Elimination of V,,/V, between (5.34) and (5.36) gives

You = Lon Gy (5.37)

Vp L, a,

Since the prototype is no doubt an air operation, we need a wind-tunnel fluid of low
viscosity and high speed of sound. Hydrogen is the only practical example, but clearly
it is too expensive and dangerous. Therefore wind tunnels normally operate with air as
the working fluid. Cooling and pressurizing the air will bring Eq. (5.37) into better

Range Range
of Re,, ofRe,
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_ - extrapolation
—

-\ Uncertainty

in prototype
data estimate
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Fig. 5.9 Hydraulic model of a bar-
rier-beach inlet at Little River,
South Carolina. Such models of ne-
cessity violate geometric similarity
and do not model the Reynolds
number of the prototype inlet.
(Courtesy of U.S. Army Engineer
Waterways Experiment Station).
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agreement but not enough to satisfy a length-scale reduction of, say, one-tenth. There-
fore Reynolds-number scaling is also commonly violated in aerodynamic testing, and
an extrapolation like that in Fig. 5.8 is required here also.

Finally, a serious discrepancy of another type occurs in hydraulic models of natural
flow systems such as rivers, harbors, estuaries, and embayments. Such flows have large
horizontal dimensions and small relative vertical dimensions. If we were to scale an es-
tuary model by a uniform linear length ratio of, say, 1:1000, the resulting model would
be only a few millimeters deep and dominated by entirely spurious surface-
tension or Weber-number effects. Therefore such hydraulic models commonly violate geo-
metric similarity by “distorting” the vertical scale by a factor of 10 or more. Figure 5.9
shows a hydraulic model of a barrier-beach inlet in South Carolina. The horizontal scale
reduction is 1:300, but the vertical scale is only 1:60. Since a deeper channel flows more
efficiently, the model channel bottom is deliberately roughened more than the natural chan-
nel to correct for the geometric discrepancy. Thus the friction effect of the discrepancy
can be corrected, but its effect on, say, dispersion of heat and mass is less well known.

EXAMPLE 5.7

The pressure drop due to friction for flow in a long smooth pipe is a function of average flow
velocity, density, viscosity, and pipe length and diameter: Ap = fen(V, p, u, L, D). We wish to
know how Ap varies with V. (@) Use the pi theorem to rewrite this function in dimensionless
form. (b) Then plot this function, using the following data for three pipes and three fluids:



308 Chapter 5 Dimensional Analysis and Similarity

D, cm L, m 0, m’/h Ap, Pa p, kg/m® M, kg/(m - s) V, m/s*
1.0 5.0 0.3 4,680 6807t 2.92 E-4% 1.06
1.0 7.0 0.6 22,300 6807 2.92 E-47 2.12
1.0 9.0 1.0 70,800 680t 2.92 E-4% 3.54
2.0 4.0 1.0 2,080 998% 0.0010% 0.88
2.0 6.0 2.0 10,500 998% 0.0010% 1.77
2.0 8.0 3.1 30,400 998% 0.0010% 2.74
3.0 3.0 0.5 540 13,5508 1.56 E-3§ 0.20
3.0 4.0 1.0 2,480 13,5508 1.56 E-3§ 0.39
3.0 5.0 1.7 9,600 13,5508 1.56 E-3§ 0.67

*V = QIA, A = wD*4.
TGasoline.

+Water.

§Mercury.

(c) Suppose it is further known that Ap is proportional to L (which is quite true for long pipes
with well-rounded entrances). Use this information to simplify and improve the pi-theorem for-
mulation. Plot the dimensionless data in this improved manner and comment upon the results.

Solution

There are six variables with three primary dimensions involved {MLT?}. Therefore we expect that
Jj =6 — 3 =3 pi groups. We are correct, for we can find three variables which do not form a pi
product, for example, (p, V, L). Carefully select three (j) repeating variables, but not including
Ap or V, which we plan to plot versus each other. We select (p, w, D), and the pi theorem guar-

antees that three independent power-product groups will occur:
I, = p’u’DAp I = puD'V 1l =pu"D'L
D”> A
or I, = # I, = pVD I, = L
w s D

We have omitted the algebra of finding (a, b, c, d, e, f, g, h, i) by setting all exponents to zero
MO, L°, T°. Therefore we wish to plot the dimensionless relation

D> A
P 5 L — fen pVD’ L Ans. (a)
M mw D

We plot I1; versus I, with Il; as a parameter. There will be nine data points. For example, the
first row in the data above yields

pD> Ap _ (680)(0.01)%(4680)

= 3.73 E9
w? (2.92 E-4)*

pVD  (680)(1.06)(0.01) L
= =24700 =500
“ 2.92 E-4 ’ D

The nine data points are plotted as the open circles in Fig. 5.10. The values of L/D are listed
for each point, and we see a significant length effect. In fact, if we connect the only two points
which have the same L/D ( = 200), we could see (and cross-plot to verify) that Ap increases
linearly with L, as stated in the last part of the problem. Since L occurs only in I13 = L/D, the
function II, = fen(Il,, I15) must reduce to I1, = (L/D) fen(Il,), or simply a function involving
only two parameters:



Fig. 5.10 Two different correlations
of the data in Example 5.7: Open
circles when plotting pD* Ap/u®
versus Rep, L/D is a parameter;
once it is known that Ap is propor-
tional to L, a replot (solid circles)
of pD® Ap/(Lu?) versus Rep col-
lapses into a single power-law
curve.
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We now modify each data point in Fig. 5.10 by dividing it by its L/D value. For example, for the
first row of data, pD* Ap/(Lu?) = (3.73 E9)/500 = 7.46 E6. We replot these new data points as
solid circles in Fig. 5.10. They correlate almost perfectly into a straight-line power-law function:

pD’ Ap
Lu?

175

=~ O.ISS(M) Ans. (c)
73

All newtonian smooth pipe flows should correlate in this manner. This example is a variation of

the first completely successful dimensional analysis, pipe-flow friction, performed by Prandtl’s

student Paul Blasius, who published a related plot in 1911. For this range of (turbulent-flow)

Reynolds numbers, the pressure drop increases approximately as V'-7°.

EXAMPLE 5.8

The smooth-sphere data plotted in Fig. 5.3a represent dimensionless drag versus dimensionless
viscosity, since (p, V, d) were selected as scaling or repeating variables. (a) Replot these data to
display the effect of dimensionless velocity on the drag. (b) Use your new figure to predict the
terminal (zero-acceleration) velocity of a 1-cm-diameter steel ball (SG = 7.86) falling through
water at 20°C.

Solution

To display the effect of velocity, we must not use V as a repeating variable. Instead we choose
(p, m, d) as our j variables to nondimensionalize Eq. (5.1), F = fen(d, V, p, w). (See Example
5.2 for an alternate approach to this problem.) The pi groups form as follows:

I, = p*uld°F = p_127 I, = p*Wd®V = pvd Ans. (a)
5 ®
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Thatis,a=1,b=—-2,c=0,e=1,f= —1,and g = 1, by using our power-product techniques
of Examples 5.2 to 5.6. Therefore a plot of pF/u? versus Re will display the direct effect of ve-
locity on sphere drag. This replot is shown as Fig. 5.11. The drag increases rapidly with veloc-
ity up to transition, where there is a slight drop, after which it increases more quickly than ever.
If the force is known, we may predict the velocity from the figure.

For water at 20°C, take p = 998 kg/m3 and w = 0.001 kg/(m -s). For steel, p; =
7.86pyater = 7840 kg/m3 . For terminal velocity, the drag equals the net weight of the sphere in
water. Thus

F =Wy = (ps — pw)g%d3 = (7840 — 998)(9.81)(%)(0.01)3 =0.0351 N

Therefore the ordinate of Fig. 5.11 is known:

. pF _ (998 kg/m*)(0.0351 N)
Falling steel sphere: £ -
alling steel sphere .U«Z 10,001 kg/(m - R

~35E7

From Fig. 5.11, at pF/u* = 3.5 E7, a magnifying glass reveals that Re, =~ 2 E4. Then a crude
estimate of the terminal fall velocity is

pvd = 20,000 or
o

20,000[0.001 kg/(m - 5)] m
~ ~202  Aus. (b
(998 kg/m*)(0.01 m) s ns. (b)
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Summary

Problems

Problems 311

Better accuracy could be obtained by expanding the scale of Fig. 5.11 in the region of the given
force coefficient. However, there is considerable uncertainty in published drag data for spheres,
so the predicted fall velocity is probably uncertain by at least =5 percent.

Note that we found the answer directly from Fig. 5.11. We could use Fig. 5.3a also but would
have to iterate between the ordinate and abscissa to obtain the final result, since V is contained
in both plotted variables.

Chapters 3 and 4 presented integral and differential methods of mathematical analysis
of fluid flow. This chapter introduces the third and final method: experimentation, as
supplemented by the technique of dimensional analysis. Tests and experiments are used
both to strengthen existing theories and to provide useful engineering results when the-
ory is inadequate.

The chapter begins with a discussion of some familiar physical relations and how
they can be recast in dimensionless form because they satisfy the principle of dimen-
sional homogeneity. A general technique, the pi theorem, is then presented for sys-
tematically finding a set of dimensionless parameters by grouping a list of variables
which govern any particular physical process. Alternately, direct application of di-
mensional analysis to the basic equations of fluid mechanics yields the fundamental
parameters governing flow patterns: Reynolds number, Froude number, Prandtl num-
ber, Mach number, and others.

It is shown that model testing in air and water often leads to scaling difficulties for
which compromises must be made. Many model tests do not achieve true dynamic sim-
ilarity. The chapter ends by pointing out that classic dimensionless charts and data can
be manipulated and recast to provide direct solutions to problems that would otherwise
be quite cumbersome and laboriously iterative.

Most of the problems herein are fairly straightforward. More dif- 5.4 Nondimensionalizing the basic equations 5.42-5.47
ficult or open-ended assignments are labeled with an asterisk. Prob- 54 Data for spheres and cylinders 5.48-5.57
lems labeled with an EES icon, for example, Prob. 5.61, will ben- 55 Scaling of model data 5.58-5.74

efit from the use of the Engineering Equation Solver (EES), while
problems labeled with a computer icon may require the use of a
computer. The standard end-of-chapter problems 5.1 to 5.91 (cat-

5.5 Froude- and Mach-number scaling 5.75-5.84
5.5 Inventive rescaling of the data 5.85-5.91

egorized in the problem list below) are followed by word problems

W5.1 to W5.10, fundamentals of engineering exam problems FES.1
to FE5.10, comprehensive applied problems C5.1 to C5.4, and de-
sign projects D5.1 and D5.2.

Problem distribution

P5.1 For axial flow through a circular tube, the Reynolds num-
ber for transition to turbulence is approximately 2300 [see
Eq. (6.2)], based upon the diameter and average velocity. If
d = 5 cm and the fluid is kerosine at 20°C, find the volume
flow rate in m*/h which causes transition.

P5.2 In flow past a thin flat body such as an airfoil, transition to

Section Problems turbulence occurs at about Re = 1 E6, based on the distance
5.1 Introduction 5.1-5.6 x from the leading edge of the wing. If an airplane flies at
52 Choosing proper scaling parameters 5.7-59 450 mi/h at 8-km standard altitude and undergoes transition
52 The principle of dimensional homogeneity ~ 5.10-5.17 at the 12 percent chord position, how long is its chord (wing
53 The pi theorem

5.18-5.41 length from leading to trailing edge)?



