
6.1 Reynolds-Number Regimes

Motivation. This chapter is completely devoted to an important practical fluids engi-
neering problem: flow in ducts with various velocities, various fluids, and various duct
shapes. Piping systems are encountered in almost every engineering design and thus
have been studied extensively. There is a small amount of theory plus a large amount
of experimentation.

The basic piping problem is this: Given the pipe geometry and its added compo-
nents (such as fittings, valves, bends, and diffusers) plus the desired flow rate and fluid
properties, what pressure drop is needed to drive the flow? Of course, it may be stated
in alternate form: Given the pressure drop available from a pump, what flow rate will
ensue? The correlations discussed in this chapter are adequate to solve most such pip-
ing problems.

Now that we have derived and studied the basic flow equations in Chap. 4, you would
think that we could just whip off myriad beautiful solutions illustrating the full range
of fluid behavior, of course expressing all these educational results in dimensionless
form, using our new tool from Chap. 5, dimensional analysis.

The fact of the matter is that no general analysis of fluid motion yet exists. There
are several dozen known particular solutions, there are some rather specific digital-
computer solutions, and there are a great many experimental data. There is a lot of the-
ory available if we neglect such important effects as viscosity and compressibility
(Chap. 8), but there is no general theory and there may never be. The reason is that a
profound and vexing change in fluid behavior occurs at moderate Reynolds numbers.
The flow ceases being smooth and steady (laminar) and becomes fluctuating and agi-
tated (turbulent). The changeover is called transition to turbulence. In Fig. 5.3a we saw
that transition on the cylinder and sphere occurred at about Re ! 3 " 105, where the
sharp drop in the drag coefficient appeared. Transition depends upon many effects, e.g.,
wall roughness (Fig. 5.3b) or fluctuations in the inlet stream, but the primary parame-
ter is the Reynolds number. There are a great many data on transition but only a small
amount of theory [1 to 3].

Turbulence can be detected from a measurement by a small, sensitive instrument
such as a hot-wire anemometer (Fig. 6.29e) or a piezoelectric pressure transducer. The
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Fig. 6.1 The three regimes of vis-
cous flow: (a) laminar flow at low
Re; (b) transition at intermediate
Re; (c) turbulent flow at high Re.

flow will appear steady on average but will reveal rapid, random fluctuations if turbu-
lence is present, as sketched in Fig. 6.1. If the flow is laminar, there may be occasional
natural disturbances which damp out quickly (Fig. 6.1a). If transition is occurring, there
will be sharp bursts of turbulent fluctuation (Fig. 6.1b) as the increasing Reynolds num-
ber causes a breakdown or instability of laminar motion. At sufficiently large Re, the
flow will fluctuate continually (Fig. 6.1c) and is termed fully turbulent. The fluctua-
tions, typically ranging from 1 to 20 percent of the average velocity, are not strictly
periodic but are random and encompass a continuous range, or spectrum, of frequen-
cies. In a typical wind-tunnel flow at high Re, the turbulent frequency ranges from 1
to 10,000 Hz, and the wavelength ranges from about 0.01 to 400 cm.

EXAMPLE 6.1

The accepted transition Reynolds number for flow in a circular pipe is Red,crit ! 2300. For flow
through a 5-cm-diameter pipe, at what velocity will this occur at 20°C for (a) airflow and (b) wa-
ter flow?

Solution

Almost all pipe-flow formulas are based on the average velocity V ! Q/A, not centerline or any
other point velocity. Thus transition is specified at #Vd/$ ! 2300. With d known, we introduce
the appropriate fluid properties at 20°C from Tables A.3 and A.4:

(a) Air: ! ! 2300 or V ! 0.7

(b) Water: ! ! 2300 or V ! 0.046

These are very low velocities, so most engineering air and water pipe flows are turbulent, not
laminar. We might expect laminar duct flow with more viscous fluids such as lubricating oils or
glycerin.

In free surface flows, turbulence can be observed directly. Figure 6.2 shows liquid
flow issuing from the open end of a tube. The low-Reynolds-number jet (Fig. 6.2a) is
smooth and laminar, with the fast center motion and slower wall flow forming different
trajectories joined by a liquid sheet. The higher-Reynolds-number turbulent flow (Fig.
6.2b) is unsteady and irregular but, when averaged over time, is steady and predictable.
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Fig. 6.2 Flow issuing at constant
speed from a pipe: (a) high-
viscosity, low-Reynolds-number,
laminar flow; (b) low-viscosity,
high-Reynolds-number, turbulent
flow. [From Illustrated Experiments
in Fluid Mechanics (The NCFMF
Book of Film Notes), National
Committee for Fluid Mechanics
Films, Education Development
Center, Inc., copyright 1972.]

How did turbulence form inside the pipe? The laminar parabolic flow profile, which
is similar to Eq. (4.143), became unstable and, at Red ! 2300, began to form “slugs”
or “puffs” of intense turbulence. A puff has a fast-moving front and a slow-moving rear
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Fig. 6.3 Formation of a turbulent
puff in pipe flow: (a) and (b) near
the entrance; (c) somewhat down-
stream; (d) far downstream.  (From
Ref. 45, courtesy of P. R. Bandy-
opadhyay.)

and may be visualized by experimenting with glass tube flow. Figure 6.3 shows a puff
as photographed by Bandyopadhyay [45]. Near the entrance (Fig. 6.3a and b) there is
an irregular laminar-turbulent interface, and vortex roll-up is visible. Further down-
stream (Fig. 6.3c) the puff becomes fully turbulent and very active, with helical mo-
tions visible. Far downstream (Fig. 6.3d), the puff is cone-shaped and less active, with
a fuzzy ill-defined interface, sometimes called the “relaminarization” region.

A complete description of the statistical aspects of turbulence is given in Ref. 1, while
theory and data on transition effects are given in Refs. 2 and 3. At this introductory level
we merely point out that the primary parameter affecting transition is the Reynolds num-
ber. If Re ! UL/', where U is the average stream velocity and L is the “width,” or trans-
verse thickness, of the shear layer, the following approximate ranges occur:

0 ( Re ( 1: highly viscous laminar “creeping” motion
1 ( Re ( 100: laminar, strong Reynolds-number dependence

100 ( Re ( 103: laminar, boundary-layer theory useful
103 ( Re ( 104: transition to turbulence
104 ( Re ( 106: turbulent, moderate Reynolds-number dependence
106 ( Re ( ): turbulent, slight Reynolds-number dependence

These are representative ranges which vary somewhat with flow geometry, surface
roughness, and the level of fluctuations in the inlet stream. The great majority of our
analyses are concerned with laminar flow or with turbulent flow, and one should not
normally design a flow operation in the transition region.

Since turbulent flow is more prevalent than laminar flow, experimenters have observed
turbulence for centuries without being aware of the details. Before 1930 flow instru-
ments were too insensitive to record rapid fluctuations, and workers simply reported
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Fig. 6.4 Experimental evidence of
transition for water flow in a %14%-in
smooth pipe 10 ft long.

mean values of velocity, pressure, force, etc. But turbulence can change the mean val-
ues dramatically, e.g., the sharp drop in drag coefficient in Fig. 5.3. A German engineer
named G. H. L. Hagen first reported in 1839 that there might be two regimes of vis-
cous flow. He measured water flow in long brass pipes and deduced a pressure-drop law

*p ! (const) + entrance effect (6.1)

This is exactly our laminar-flow scaling law from Example 5.4, but Hagen did not re-
alize that the constant was proportional to the fluid viscosity.

The formula broke down as Hagen increased Q beyond a certain limit, i.e., past the
critical Reynolds number, and he stated in his paper that there must be a second mode
of flow characterized by “strong movements of water for which *p varies as the sec-
ond power of the discharge. . . .” He admitted that he could not clarify the reasons for
the change.

A typical example of Hagen’s data is shown in Fig. 6.4. The pressure drop varies
linearly with V ! Q/A up to about 1.1 ft/s, where there is a sharp change. Above about
V ! 2.2 ft/s the pressure drop is nearly quadratic with V. The actual power *p , V1.75

seems impossible on dimensional grounds but is easily explained when the dimen-
sionless pipe-flow data (Fig. 5.10) are displayed.

In 1883 Osborne Reynolds, a British engineering professor, showed that the change
depended upon the parameter #Vd/$, now named in his honor. By introducing a dye
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6.2 Internal versus External
Viscous Flows

Fig. 6.5 Reynolds’ sketches of
pipe-flow transition: (a) low-speed,
laminar flow; (b) high-speed, turbu-
lent flow; (c) spark photograph of
condition (b).  (From Ref. 4.)

streak into a pipe flow, Reynolds could observe transition and turbulence. His sketches
of the flow behavior are shown in Fig. 6.5.

If we examine Hagen’s data and compute the Reynolds number at V ! 1.1 ft/s, we
obtain Red ! 2100. The flow became fully turbulent, V ! 2.2 ft/s, at Red ! 4200. The
accepted design value for pipe-flow transition is now taken to be

Red,crit ! 2300 (6.2)

This is accurate for commercial pipes (Fig. 6.13), although with special care in pro-
viding a rounded entrance, smooth walls, and a steady inlet stream, Red,crit can be de-
layed until much higher values.

Transition also occurs in external flows around bodies such as the sphere and cylin-
der in Fig. 5.3. Ludwig Prandtl, a German engineering professor, showed in 1914 that
the thin boundary layer surrounding the body was undergoing transition from laminar
to turbulent flow. Thereafter the force coefficient of a body was acknowledged to be a
function of the Reynolds number [Eq. (5.2)].

There are now extensive theories and experiments of laminar-flow instability which
explain why a flow changes to turbulence. Reference 5 is an advanced textbook on this
subject.

Laminar-flow theory is now well developed, and many solutions are known [2, 3],
but there are no analyses which can simulate the fine-scale random fluctuations of tur-
bulent flow.1 Therefore existing turbulent-flow theory is semiempirical, based upon di-
mensional analysis and physical reasoning; it is concerned with the mean flow prop-
erties only and the mean of the fluctuations, not their rapid variations. The
turbulent-flow “theory” presented here in Chaps. 6 and 7 is unbelievably crude yet sur-
prisingly effective. We shall attempt a rational approach which places turbulent-flow
analysis on a firm physical basis.

Both laminar and turbulent flow may be either internal, i.e., “bounded” by walls, or
external and unbounded. This chapter treats internal flows, and Chap. 7 studies exter-
nal flows.

An internal flow is constrained by the bounding walls, and the viscous effects will
grow and meet and permeate the entire flow. Figure 6.6 shows an internal flow in a
long duct. There is an entrance region where a nearly inviscid upstream flow converges
and enters the tube. Viscous boundary layers grow downstream, retarding the axial flow
u(r, x) at the wall and thereby accelerating the center-core flow to maintain the in-
compressible continuity requirement

Q ! " u dA ! const (6.3)

At a finite distance from the entrance, the boundary layers merge and the inviscid
core disappears. The tube flow is then entirely viscous, and the axial velocity adjusts
slightly further until at x ! Le it no longer changes with x and is said to be fully de-
veloped, u ! u(r) only. Downstream of x ! Le the velocity profile is constant, the wall
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Fig. 6.6 Developing velocity pro-
files and pressure changes in the
entrance of a duct flow.

shear is constant, and the pressure drops linearly with x, for either laminar or turbu-
lent flow. All these details are shown in Fig. 6.6.

Dimensional analysis shows that the Reynolds number is the only parameter af-
fecting entrance length. If

Le ! f(d, V, #, $) V !

then ! g# $ ! g(Re) (6.4)

For laminar flow [2, 3], the accepted correlation is

! 0.06 Re laminar (6.5)

The maximum laminar entrance length, at Red,crit ! 2300, is Le ! 138d, which is the
longest development length possible.

In turbulent flow the boundary layers grow faster, and Le is relatively shorter, ac-
cording to the approximation for smooth walls

! 4.4 Red
1/6 turbulent (6.6)

Some computed turbulent entrance lengths are thus

Le%
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Red 4000 104 105 106 107 108

Le/d 18 20 30 44 65 95

Now 44 diameters may seem “long,” but typical pipe-flow applications involve an L/d
value of 1000 or more, in which case the entrance effect may be neglected and a sim-
ple analysis made for fully developed flow (Sec. 6.4). This is possible for both lami-
nar and turbulent flows, including rough walls and noncircular cross sections.

EXAMPLE 6.2

A %12%-in-diameter water pipe is 60 ft long and delivers water at 5 gal/min at 20°C. What fraction
of this pipe is taken up by the entrance region?

Solution

Convert

Q ! (5 gal/min) ! 0.0111 ft3/s

The average velocity is

V ! %
Q
A

% ! ! 8.17 ft/s

From Table 1.4 read for water ' ! 1.01 " 10-6 m2/s ! 1.09 " 10-5 ft2/s. Then the pipe
Reynolds number is

Red ! %
V
'
d
% ! ! 31,300

This is greater than 4000; hence the flow is fully turbulent, and Eq. (6.6) applies for entrance
length

%
L
d
e% ! 4.4 Re1/6

d ! (4.4)(31,300)1/6 ! 25

The actual pipe has L/d ! (60 ft)/[(%12%/12) ft] ! 1440. Hence the entrance region takes up the frac-
tion

! ! 0.017 ! 1.7% Ans.

This is a very small percentage, so that we can reasonably treat this pipe flow as essentially fully
developed.

Shortness can be a virtue in duct flow if one wishes to maintain the inviscid core.
For example, a “long” wind tunnel would be ridiculous, since the viscous core would
invalidate the purpose of simulating free-flight conditions. A typical laboratory low-
speed wind-tunnel test section is 1 m in diameter and 5 m long, with V ! 30 m/s. If
we take 'air ! 1.51 " 10-5 m2/s from Table 1.4, then Red ! 1.99 " 106 and, from
Eq. (6.6), Le/d ! 49. The test section has L/d ! 5, which is much shorter than the de-

25
%
1440

Le%
L

(8.17 ft/s)[(%12%/12) ft]
%%%

1.09 " 10-5 ft2/s

0.0111 ft3/s
%%
(./4)[(%12%/12) ft]2

0.00223 ft3/s
%%

1 gal/min
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6.3 Semiempirical Turbulent
Shear Correlations

Reynolds’ Time-Averaging
Concept

velopment length. At the end of the section the wall boundary layers are only 10 cm
thick, leaving 80 cm of inviscid core suitable for model testing.

An external flow has no restraining walls and is free to expand no matter how thick
the viscous layers on the immersed body may become. Thus, far from the body the
flow is nearly inviscid, and our analytical technique, treated in Chap. 7, is to patch an
inviscid-flow solution onto a viscous boundary-layer solution computed for the wall
region. There is no external equivalent of fully developed internal flow.

Throughout this chapter we assume constant density and viscosity and no thermal in-
teraction, so that only the continuity and momentum equations are to be solved for ve-
locity and pressure

Continuity: + + ! 0

Momentum: # ! -/p + #g + $ /2V
(6.7)

subject to no slip at the walls and known inlet and exit conditions. (We shall save our
free-surface solutions for Chap. 10.)

Both laminar and turbulent flows satisfy Eqs. (6.7). For laminar flow, where there
are no random fluctuations, we go right to the attack and solve them for a variety of
geometries [2, 3], leaving many more, of course, for the problems.

For turbulent flow, because of the fluctuations, every velocity and pressure term in Eqs.
(6.7) is a rapidly varying random function of time and space. At present our mathe-
matics cannot handle such instantaneous fluctuating variables. No single pair of ran-
dom functions V(x, y, z, t) and p(x, y, z, t) is known to be a solution to Eqs. (6.7).
Moreover, our attention as engineers is toward the average or mean values of velocity,
pressure, shear stress, etc., in a high-Reynolds-number (turbulent) flow. This approach
led Osborne Reynolds in 1895 to rewrite Eqs. (6.7) in terms of mean or time-averaged
turbulent variables.

The time mean u% of a turbulent function u(x, y, z, t) is defined by

u% ! "T

0
u dt (6.8)

where T is an averaging period taken to be longer than any significant period of the
fluctuations themselves. The mean values of turbulent velocity and pressure are illus-
trated in Fig. 6.7. For turbulent gas and water flows, an averaging period T ! 5 s is
usually quite adequate.

The fluctuation u0 is defined as the deviation of u from its average value

u0 ! u - u% (6.9)

also shown in Fig. 6.7. It follows by definition that a fluctuation has zero mean value

u%0% ! "T

0
(u - u%) dt ! u% - u% ! 0 (6.10)

1
%
T

1
%
T

dV
%
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%
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Fig. 6.7 Definition of mean and
fluctuating turbulent variables:
(a) velocity; (b) pressure.

However, the mean square of a fluctuation is not zero and is a measure of the inten-
sity of the turbulence

u%0%2% ! "T

0
u02 dt 3 0 (6.11)

Nor in general are the mean fluctuation products such as u%0%2%0% and u%0%p%0% zero in a typi-
cal turbulent flow.

Reynolds’ idea was to split each property into mean plus fluctuating variables

u ! u% + u0 2 ! 2% + 20 w ! w% + w0 p ! p% + p0 (6.12)

Substitute these into Eqs. (6.7), and take the time mean of each equation. The conti-
nuity relation reduces to

+ + ! 0 (6.13)

which is no different from a laminar continuity relation.
However, each component of the momentum equation (6.7b), after time averaging,

will contain mean values plus three mean products, or correlations, of fluctuating ve-
locities. The most important of these is the momentum relation in the mainstream, or
x, direction, which takes the form

# ! - + #gx + #$ - #u%0%2%$
+ #$ - #u%0%2%0%$ + #$ - #u%0%w%0%$

(6.14)

The three correlation terms -#u%0%2%, -#u%0%2%0%, and -#u%0%w%0% are called turbulent stresses
because they have the same dimensions and occur right alongside the newtonian (lam-
inar) stress terms $(1u%/1x), etc. Actually, they are convective acceleration terms (which
is why the density appears), not stresses, but they have the mathematical effect of stress
and are so termed almost universally in the literature.

The turbulent stresses are unknown a priori and must be related by experiment to
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Fig. 6.8 Typical velocity and shear
distributions in turbulent flow near
a wall: (a) shear; (b) velocity.

geometry and flow conditions, as detailed in Refs. 1 to 3. Fortunately, in duct and
boundary-layer flow, the stress -#u%0%2%0% associated with direction y normal to the wall
is dominant, and we can approximate with excellent accuracy a simpler streamwise
momentum equation

# ! - + #gx + (6.15)

where 4 ! $ - #u%0%2%0% ! 4lam + 4turb (6.16)

Figure 6.8 shows the distribution of 4lam and 4turb from typical measurements across
a turbulent-shear layer near a wall. Laminar shear is dominant near the wall (the wall
layer), and turbulent shear dominates in the outer layer. There is an intermediate re-
gion, called the overlap layer, where both laminar and turbulent shear are important.
These three regions are labeled in Fig. 6.8.

In the outer layer 4turb is two or three orders of magnitude greater than 4lam, and
vice versa in the wall layer. These experimental facts enable us to use a crude but very
effective model for the velocity distribution u%(y) across a turbulent wall layer.

We have seen in Fig. 6.8 that there are three regions in turbulent flow near a wall:

1. Wall layer: Viscous shear dominates.
2. Outer layer: Turbulent shear dominates.
3. Overlap layer: Both types of shear are important.

From now on let us agree to drop the overbar from velocity u%. Let 4w be the wall shear
stress, and let 5 and U represent the thickness and velocity at the edge of the outer
layer, y ! 5.

For the wall layer, Prandtl deduced in 1930 that u must be independent of the shear-
layer thickness

u ! f($, 4w, #, y) (6.17)

By dimensional analysis, this is equivalent to

1u%%
1y

14
%
1y

1p%%
1x

d u%%
dt
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u+ ! ! F# $ u* ! # $
1/2

(6.18)

Equation (6.18) is called the law of the wall, and the quantity u* is termed the friction
velocity because it has dimensions {LT-1}, although it is not actually a flow velocity.

Subsequently, Kármán in 1933 deduced that u in the outer layer is independent of
molecular viscosity, but its deviation from the stream velocity U must depend on the
layer thickness 5 and the other properties

(U - u)outer ! g(5, 4w, #, y) (6.19)

Again, by dimensional analysis we rewrite this as

! G# $ (6.20)

where u* has the same meaning as in Eq. (6.18). Equation (6.20) is called the 
velocity-defect law for the outer layer.

Both the wall law (6.18) and the defect law (6.20) are found to be accurate for a
wide variety of experimental turbulent duct and boundary-layer flows [1 to 3]. They
are different in form, yet they must overlap smoothly in the intermediate layer. In 1937
C. B. Millikan showed that this can be true only if the overlap-layer velocity varies
logarithmically with y:

! ln + B overlap layer (6.21)

Over the full range of turbulent smooth wall flows, the dimensionless constants 6 and
B are found to have the approximate values 6 ! 0.41 and B ! 5.0. Equation (6.21) is
called the logarithmic-overlap layer.

Thus by dimensional reasoning and physical insight we infer that a plot of u versus
ln y in a turbulent-shear layer will show a curved wall region, a curved outer region,
and a straight-line logarithmic overlap. Figure 6.9 shows that this is exactly the case.
The four outer-law profiles shown all merge smoothly with the logarithmic-overlap law
but have different magnitudes because they vary in external pressure gradient. The wall
law is unique and follows the linear viscous relation

u+ ! ! ! y+ (6.22)

from the wall to about y+ ! 5, thereafter curving over to merge with the logarithmic
law at about y+ ! 30.

Believe it or not, Fig. 6.9, which is nothing more than a shrewd correlation of ve-
locity profiles, is the basis for most existing “theory” of turbulent-shear flows. Notice
that we have not solved any equations at all but have merely expressed the streamwise
velocity in a neat form.

There is serendipity in Fig. 6.9: The logarithmic law (6.21), instead of just being a
short overlapping link, actually approximates nearly the entire velocity profile, except
for the outer law when the pressure is increasing strongly downstream (as in a dif-
fuser). The inner-wall law typically extends over less than 2 percent of the profile and
can be neglected. Thus we can use Eq. (6.21) as an excellent approximation to solve
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Fig. 6.9 Experimental verification
of the inner-, outer-, and overlap-
layer laws relating velocity profiles
in turbulent wall flow.

nearly every turbulent-flow problem presented in this and the next chapter. Many ad-
ditional applications are given in Refs. 2 and 3.

EXAMPLE 6.3

Air at 20°C flows through a 14-cm-diameter tube under fully developed conditions. The cen-
terline velocity is u0 ! 5 m/s. Estimate from Fig. 6.9 (a) the friction velocity u*, (b) the wall
shear stress 4w, and (c) the average velocity V ! Q/A.

Solution

For pipe flow Fig. 6.9 shows that the logarithmic law, Eq. (6.21), is accurate all the way to the
center of the tube. From Fig. E6.3 y ! R - r should go from the wall to the centerline as shown.
At the center u ! u0, y ! R, and Eq. (6.21) becomes

! ln + 5.0 (1)

Since we know that u0 ! 5 m/s and R ! 0.07 m, u* is the only unknown in Eq. (1). Find the
solution by trial and error or by EES

u* ! 0.228 m/s ! 22.8 cm/s Ans. (a)

where we have taken ' ! 1.51 " 10-5 m2/s for air from Table 1.4.

Ru*
%

'
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%
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Part (b) Assuming a pressure of 1 atm, we have # ! p/(RT) ! 1.205 kg/m3. Since by definition u* !
(4w/#)1/2, we compute

4w ! #u*2 ! (1.205 kg/m3)(0.228 m/s)2 ! 0.062 kg/(m & s2) ! 0.062 Pa Ans. (b)

This is a very small shear stress, but it will cause a large pressure drop in a long pipe (170 Pa
for every 100 m of pipe).

The average velocity V is found by integrating the logarithmic-law velocity distribution

V ! ! "R

0
u 2.r dr (2)

Introducing u ! u*[(1/6) ln (yu*/') + B] from Eq. (6.21) and noting that y ! R - r, we can
carry out the integration of Eq. (2), which is rather laborious. The final result is

V ! 0.835u0 ! 4.17 m/s Ans. (c)

We shall not bother showing the integration here because it is all worked out and a very neat
formula is given in Eqs. (6.49) and (6.59).

Notice that we started from almost nothing (the pipe diameter and the centerline velocity)
and found the answers without solving the differential equations of continuity and momen-
tum. We just used the logarithmic law, Eq. (6.21), which makes the differential equations un-
necessary for pipe flow. This is a powerful technique, but you should remember that all we
are doing is using an experimental velocity correlation to approximate the actual solution to
the problem.

We should check the Reynolds number to ensure turbulent flow

Red ! ! ! 38,700

Since this is greater than 4000, the flow is definitely turbulent.

As our first example of a specific viscous-flow analysis, we take the classic problem
of flow in a full pipe, driven by pressure or gravity or both. Figure 6.10 shows the
geometry of the pipe of radius R. The x-axis is taken in the flow direction and is in-
clined to the horizontal at an angle 7.

Before proceeding with a solution to the equations of motion, we can learn a lot by
making a control-volume analysis of the flow between sections 1 and 2 in Fig. 6.10.
The continuity relation, Eq. (3.23), reduces to

Q1 ! Q2 ! const

or V1 ! ! V2 ! (6.23)

since the pipe is of constant area. The steady-flow energy equation (3.71) reduces to

+ 81V1
2 + gz1 ! + 82V2

2 + gz2 + ghf (6.24)

since there are no shaft-work or heat-transfer effects. Now assume that the flow is fully

1
%
2

p2%
#

1
%
2

p1%
#

Q2%
A2

Q1%
A1

(4.17 m/s)(0.14 m)
%%
1.51 " 10-5 m2/s

Vd
%
'

1
%
.R2

Q
%
A
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Fig. 6.10 Control volume of steady,
fully developed flow between two
sections in an inclined pipe.

developed (Fig. 6.6), and correct later for entrance effects. Then the kinetic-energy cor-
rection factor 81 ! 82, and since V1 ! V2 from (6.23), Eq. (6.24) now reduces to a
simple expression for the friction-head loss hf

hf ! #z1 + $ - #z2 + $ ! *#z + $ ! *z + (6.25)

The pipe-head loss equals the change in the sum of pressure and gravity head, i.e., the
change in height of the hydraulic grade line (HGL). Since the velocity head is constant
through the pipe, hf also equals the height change of the energy grade line (EGL). Re-
call that the EGL decreases downstream in a flow with losses unless it passes through
an energy source, e.g., as a pump or heat exchanger.

Finally apply the momentum relation (3.40) to the control volume in Fig. 6.10, ac-
counting for applied forces due to pressure, gravity, and shear

*p .R2 + #g(.R2) *L sin 7 - 4w(2.R) *L ! ṁ (V2 - V1) ! 0 (6.26)

This equation relates hf to the wall shear stress

*z + ! hf ! (6.27)

where we have substituted *z ! *L sin 7 from Fig. 6.10.
So far we have not assumed either laminar or turbulent flow. If we can correlate 4w

with flow conditions, we have solved the problem of head loss in pipe flow. Func-
tionally, we can assume that

4w ! F(#, V, $, d, 9) (6.28)

where 9 is the wall-roughness height. Then dimensional analysis tells us that

*L
%
R

24w%
#g

*p
%
#g

*p
%
#g

p
%
#g

p2%
#g

p1%
#g
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Equations of Motion

! f ! F#Red, $ (6.29)

The dimensionless parameter f is called the Darcy friction factor, after Henry Darcy
(1803–1858), a French engineer whose pipe-flow experiments in 1857 first established
the effect of roughness on pipe resistance.

Combining Eqs. (6.27) and (6.29), we obtain the desired expression for finding pipe-
head loss

hf ! f (6.30)

This is the Darcy-Weisbach equation, valid for duct flows of any cross section and for
laminar and turbulent flow. It was proposed by Julius Weisbach, a German professor
who in 1850 published the first modern textbook on hydrodynamics.

Our only remaining problem is to find the form of the function F in Eq. (6.29) and
plot it in the Moody chart of Fig. 6.13.

For either laminar or turbulent flow, the continuity equation in cylindrical coordinates
is given by (App. D)

%
1
r

% %
1
1
r
% (r2r) + %

1
r

% %
1
1
:
% (2:) + %

1
1
u
x
% ! 0 (6.31)

We assume that there is no swirl or circumferential variation, 2: ! 1/1: ! 0, and fully
developed flow: u ! u(r) only. Then Eq. (6.31) reduces to

%
1
r

% %
1
1
r
% (r2r) ! 0

or r2r ! const (6.32)

But at the wall, r ! R, 2r ! 0 (no slip); therefore (6.32) implies that υr ! 0 every-
where. Thus in fully developed flow there is only one velocity component, u ! u(r).

The momentum differential equation in cylindrical coordinates now reduces to

#u %
1
1
u
x
% ! -%

d
d
p
x
% + #gx + %

1
r

% %
1
1
r
% (r4) (6.33)

where 4 can represent either laminar or turbulent shear. But the left-hand side vanishes
because u ! u(r) only. Rearrange, noting from Fig. 6.10 that gx ! g sin 7:

%
1
r

% %
1
1
r
% (r4) ! %

d
d
x
% (p - #gx sin 7) ! %

d
d
x
% (p + #gz) (6.34)

Since the left-hand side varies only with r and the right-hand side varies only with x,
it follows that both sides must be equal to the same constant.2 Therefore we can inte-
grate Eq. (6.34) to find the shear distribution across the pipe, utilizing the fact that 
4 ! 0 at r ! 0

4 ! %
1
2

% r %
d
d
x
% (p + #gz) ! (const)(r) (6.35)

V2

%
2g

L
%
d

9
%
d

84w%
#V2
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Laminar-Flow Solution

Thus the shear varies linearly from the centerline to the wall, for either laminar or tur-
bulent flow. This is also shown in Fig. 6.10. At r ! R, we have the wall shear

4w ! %
1
2

% R %
*p +

*L
#g *z
% (6.36)

which is identical with our momentum relation (6.27). We can now complete our study
of pipe flow by applying either laminar or turbulent assumptions to fill out Eq. (6.35).

Note in Eq. (6.35) that the HGL slope d( p + #gz)/dx is negative because both pres-
sure and height drop with x. For laminar flow, 4 !$ du/dr, which we substitute in
Eq. (6.35)

$ %
d
d
u
r
% ! %

1
2

% rK K ! %
d
d
x
% ( p + #gz) (6.37)

Integrate once

u ! %
1
4

% r2 %
K
$

% + C1 (6.38)

The constant C1 is evaluated from the no-slip condition at the wall: u ! 0 at r ! R

0 ! %
1
4

% R2 %
K
$

% + C1 (6.39)

or C1 ! -%14%R2K/$. Introduce into Eq. (6.38) to obtain the exact solution for laminar
fully developed pipe flow

u ! %
4
1
$
% &-%

d
d
x
%( p + #gz)'(R2 - r2) (6.40)

The laminar-flow profile is thus a paraboloid falling to zero at the wall and reaching
a maximum at the axis

umax ! %
4
R
$

2

% &-%
d
d
x
%( p + #gz)' (6.41)

It resembles the sketch of u(r) given in Fig. 6.10.
The laminar distribution (6.40) is called Hagen-Poiseuille flow to commemorate the

experimental work of G. Hagen in 1839 and J. L. Poiseuille in 1940, both of whom
established the pressure-drop law, Eq. (6.1). The first theoretical derivation of Eq. (6.40)
was given independently by E. Hagenbach and by F. Neumann around 1859.

Other pipe-flow results follow immediately from Eq. (6.40). The volume flow is

Q ! "R

0
u dA ! "R

0
umax#1 - %

R
r2

2%$2.r dr

! %
1
2

%umax.R2 ! %
.
8
R
$

4

% &-%
d
d
x
%( p + #gz)' (6.42)

Thus the average velocity in laminar flow is one-half the maximum velocity
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E6.4

V ! %
Q
A

% ! %
.
Q
R2% ! %

1
2

% umax (6.43)

For a horizontal tube (*z ! 0), Eq. (6.42) is of the form predicted by Hagen’s exper-
iment, Eq. (6.1):

*p ! %
8
.
$

R
L

4
Q

% (6.44)

The wall shear is computed from the wall velocity gradient

4w ! ($ %
d
d
u
r
%(r!R

! %
2$u

R
max% ! %

1
2

%R(%
d
d
x
%(p + #gz)( (6.45)

This gives an exact theory for laminar Darcy friction factor

f ! %
#
8
V
4w

2% ! %
8(8

#
$
V
V
2
/d)

% ! %
6
#
4
V
$
d

%

or flam ! %
R
6
e
4
d

% (6.46)

This is plotted later in the Moody chart (Fig. 6.13). The fact that f drops off with in-
creasing Red should not mislead us into thinking that shear decreases with velocity:
Eq. (6.45) clearly shows that 4w is proportional to umax; it is interesting to note that 4w

is independent of density because the fluid acceleration is zero.
The laminar head loss follows from Eq. (6.30)

hf,lam ! %
6
#
4
V
$
d

% %
L
d

% %
2
V
g

2

% ! %
3
#
2
g
$
d
L
2
V

% ! %
1
.
28

#
$
gd

L
4
Q

% (6.47)

We see that laminar head loss is proportional to V.

EXAMPLE 6.4

An oil with # ! 900 kg/m3 and ' ! 0.0002 m2/s flows upward through an inclined pipe as shown
in Fig. E6.4. The pressure and elevation are known at sections 1 and 2, 10 m apart. Assuming
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10 m
Q,V

d = 6 cm

p2 = 250,000 Pa

p1 = 350,000 Pa, z1 = 0

1

2

40˚

steady laminar flow, (a) verify that the flow is up, (b) compute hf between 1 and 2, and compute
(c) Q, (d) V, and (e) Red. Is the flow really laminar?



E6.5

Solution

For later use, calculate

$ ! #' ! (900 kg/m3)(0.0002 m2/s) ! 0.18 kg/(m & s)

z2 ! *L sin 40° ! (10 m)(0.643) ! 6.43 m

The flow goes in the direction of falling HGL; therefore compute the hydraulic grade-line height
at each section

HGL1 ! z1 + %
#
p
g
1% ! 0 + %

90
3
0
5
(
0
9
,0
.8
0
0
0
7)

% ! 39.65 m

HGL2 ! z2 + %
#
p
g
2% ! 6.43 + %

90
2
0
5
(
0
9
,0
.8
0
0
0
7)

% ! 34.75 m

The HGL is lower at section 2; hence the flow is from 1 to 2 as assumed. Ans. (a)

The head loss is the change in HGL:

hf ! HGL1 - HGL2 ! 39.65 m - 34.75 m ! 4.9 m Ans. (b)

Half the length of the pipe is quite a large head loss.

We can compute Q from the various laminar-flow formulas, notably Eq. (6.47)

Q ! %
.

1
#

2
g
8
d
$

4

L
hf

% ! ! 0.0076 m3/s Ans. (c)

Divide Q by the pipe area to get the average velocity

V ! %
.
Q
R2% ! %

.
0
(
.
0
0
.
0
0
7
3
6
)2% ! 2.7 m/s Ans. (d)

With V known, the Reynolds number is

Red ! %
V
'
d
% ! %

2
0
.7
.0
(0
0
.
0
0
2
6)

% ! 810 Ans. (e)

This is well below the transition value Red ! 2300, and so we are fairly certain the flow is lam-
inar.

Notice that by sticking entirely to consistent SI units (meters, seconds, kilograms, newtons)
for all variables we avoid the need for any conversion factors in the calculations.

EXAMPLE 6.5

A liquid of specific weight #g ! 58 lb/ft3 flows by gravity through a 1-ft tank and a 1-ft capil-
lary tube at a rate of 0.15 ft3/h, as shown in Fig. E6.5. Sections 1 and 2 are at atmospheric pres-
sure. Neglecting entrance effects, compute the viscosity of the liquid.

Solution

Apply the steady-flow energy equation (6.24), including the correction factor 8:

.(900)(9.807)(0.06)4(4.9)
%%%

128(0.18)(10)

6.4 Flow in a Circular Pipe 343

1

2

d = 0.004 ft

Q = 0.15 ft3/   h

1 ft

1 ft

Part (a)

Part (b)

Part (c)

Part (d)

Part (e)



Turbulent-Flow Solution

%
#
p
g
1% + %

8
2
1V
g

1
2

% + z1 ! %
#
p
g
2% + %

8
2
2V
g

2
2

% + z2 + hf

The average exit velocity V2 can be found from the volume flow and the pipe size:

V2 ! %
A
Q

2
% ! %

.
Q
R2% !%

(0.
.
1
(
5
0
/3
.0
6
0
0
2
0)

ft
f
)
t
2

3/s
%! 3.32 ft/s

Meanwhile p1 ! p2 ! pa, and V1 ! 0 in the large tank. Therefore, approximately,

hf ! z1 - z2 - 82%
V
2g

2
2

% ! 2.0 ft - 2.0 %
2
(
(
3
3
.3
2
2
.2

f
f
t
t
/
/
s
s
)
2

2

)
% ! 1.66 ft

where we have introduced 82 ! 2.0 for laminar pipe flow from Eq. (3.72). Note that hf includes
the entire 2-ft drop through the system and not just the 1-ft pipe length.

With the head loss known, the viscosity follows from our laminar-flow formula (6.47):

hf ! 1.66 ft ! %
3
#
2
g
$
d
L
2
V

% ! ! 114,500 $

or $ ! %
11

1
4
.6
,5
6
00

% ! 1.45 E-5 slug/(ft & s) Ans.

Note that L in this formula is the pipe length of 1 ft. Finally, check the Reynolds number:

Red ! %
#
$
Vd
% ! ! 1650 laminar

Since this is less than 2300, we conclude that the flow is indeed laminar. Actually, for this head
loss, there is a second (turbulent) solution, as we shall see in Example 6.8.

For turbulent pipe flow we need not solve a differential equation but instead proceed
with the logarithmic law, as in Example 6.3. Assume that Eq. (6.21) correlates the lo-
cal mean velocity u(r) all the way across the pipe

%
u
u
(
*
r)
% ! %

6
1

% ln %
(R -

'
r)u*
% + B (6.48)

where we have replaced y by R - r. Compute the average velocity from this profile

V ! %
Q
A

% ! %
.

1
R2% "R

0
u*&%

6
1

% ln %
(R -

'
r)u*
% + B'2.r dr

! %
1
2

%u*#%
6
2

% ln %
R

'
u*
% + 2B - %

6
3

%$ (6.49)

Introducing 6 ! 0.41 and B ! 5.0, we obtain, numerically,

%
u
V
*
% ! 2.44 ln %

R
'
u*
% + 1.34 (6.50)

This looks only marginally interesting until we realize that V/u* is directly related to
the Darcy friction factor

(58/32.2 slug/ft3)(3.32 ft/s)(0.004 ft)
%%%%

1.45 E-5 slug/(ft & s)

32$(1.0 ft)(3.32 ft/s)
%%%
(58 lbf/ft3)(0.004 ft)2
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%
u
V
*
% ! #%

#
4
V

w

2

%$
1/2

! #%
8
f
%$

1/2
(6.51)

Moreover, the argument of the logarithm in (6.50) is equivalent to

%
R

'
u*
% ! %

u
V
*
% ! %

1
2

%Red#%
8
f
%$

1/2
(6.52)

Introducing (6.52) and (6.51) into Eq. (6.50), changing to a base-10 logarithm, and re-
arranging, we obtain

%
f 1
1
/2% ! 1.99 log (Red f1/2) - 1.02 (6.53)

In other words, by simply computing the mean velocity from the logarithmic-law cor-
relation, we obtain a relation between the friction factor and Reynolds number for tur-
bulent pipe flow. Prandtl derived Eq. (6.53) in 1935 and then adjusted the constants
slightly to fit friction data better

%
f 1
1
/2% ! 2.0 log (Red f1/2) - 0.8 (6.54)

This is the accepted formula for a smooth-walled pipe. Some numerical values may be
listed as follows:

Red 4000 104 105 106 107 108

f 0.0399 0.0309 0.0180 0.0116 0.0081 0.0059

Thus f drops by only a factor of 5 over a 10,000-fold increase in Reynolds number. Equa-
tion (6.54) is cumbersome to solve if Red is known and f is wanted. There are many al-
ternate approximations in the literature from which f can be computed explicitly from Red

0.316 Red
-1/4 4000 ( Red ( 105 H. Blasius (1911)

f ! (6.55)

#1.8 log %
R
6.

e
9
d%$

-2
Ref. 9

Blasius, a student of Prandtl, presented his formula in the first correlation ever made
of pipe friction versus Reynolds number. Although his formula has a limited range, it
illustrates what was happening to Hagen’s 1839 pressure-drop data. For a horizontal
pipe, from Eq. (6.55),

hf ! %
*
#g

p
% ! f %

L
d

% %
2
V
g

2

% ! 0.316#%
#
$
Vd
%$

1/4
%
L
d

% %
2
V
g

2

%

or *p ! 0.158 L#3/4$1/4d-5/4V7/4 (6.56)

at low turbulent Reynolds numbers. This explains why Hagen’s data for pressure drop
begin to increase as the 1.75 power of the velocity, in Fig. 6.4. Note that *p varies
only slightly with viscosity, which is characteristic of turbulent flow. Introducing Q !
%14%.d2V into Eq. (6.56), we obtain the alternate form

*p ! 0.241L#3/4$1/4d-4.75Q1.75 (6.57)

For a given flow rate Q, the turbulent pressure drop decreases with diameter even more
sharply than the laminar formula (6.47). Thus the quickest way to reduce required

%12%Vd
%

'
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Effect of Rough Walls

pumping pressure is to increase the pipe size, although, of course, the larger pipe is
more expensive. Doubling the pipe size decreases *p by a factor of about 27 for a
given Q. Compare Eq. (6.56) with Example 5.7 and Fig. 5.10.

The maximum velocity in turbulent pipe flow is given by Eq. (6.48), evaluated at
r ! 0

%
u
u
m

*
ax% ! %

6
1

% ln %
R

'
u*
% + B (6.58)

Combining this with Eq. (6.49), we obtain the formula relating mean velocity to max-
imum velocity

%
um

V

ax
% ! (1 + 1.33)f%)-1 (6.59)

Some numerical values are

Red 4000 104 105 106 107 108

V/umax 0.790 0.811 0.849 0.875 0.893 0.907

The ratio varies with the Reynolds number and is much larger than the value of 0.5
predicted for all laminar pipe flow in Eq. (6.43). Thus a turbulent velocity profile, as
shown in Fig. 6.11, is very flat in the center and drops off sharply to zero at the wall.

It was not known until experiments in 1800 by Coulomb [6] that surface roughness has
an effect on friction resistance. It turns out that the effect is negligible for laminar pipe
flow, and all the laminar formulas derived in this section are valid for rough walls also.
But turbulent flow is strongly affected by roughness. In Fig. 6.9 the linear viscous sub-
layer only extends out to y+ ! yu*/' ! 5. Thus, compared with the diameter, the sub-
layer thickness ys is only

%
y
d
s% ! %

5'
d
/u*
% ! %

R
1
ed

4.
f
1
1/2% (6.60)
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(b)
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umax
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Fig. 6.11 Comparison of laminar
and turbulent pipe-flow velocity
profiles for the same volume flow:
(a) laminar flow; (b) turbulent flow.



Fig. 6.12 Effect of wall roughness
on turbulent pipe flow. (a) The log-
arithmic overlap-velocity profile
shifts down and to the right; (b) ex-
periments with sand-grain rough-
ness by Nikuradse [7] show a sys-
tematic increase of the turbulent
friction factor with the roughness
ratio.

For example, at Red ! 105, f ! 0.0180, and ys /d ! 0.001, a wall roughness of about
0.001d will break up the sublayer and profoundly change the wall law in Fig. 6.9.

Measurements of u(y) in turbulent rough-wall flow by Prandtl’s student Nikuradse
[7] show, as in Fig. 6.12a, that a roughness height 9 will force the logarithm-law pro-
file outward on the abscissa by an amount approximately equal to ln 9+, where 9+ !
9u*/'. The slope of the logarithm law remains the same, 1/6, but the shift outward
causes the constant B to be less by an amount *B ! (1/6) ln 9+.

Nikuradse [7] simulated roughness by gluing uniform sand grains onto the inner
walls of the pipes. He then measured the pressure drops and flow rates and correlated
friction factor versus Reynolds number in Fig. 6.12b. We see that laminar friction is
unaffected, but turbulent friction, after an onset point, increases monotonically with the
roughness ratio 9/d. For any given 9/d, the friction factor becomes constant (fully rough)
at high Reynolds numbers. These points of change are certain values of 9+ ! 9u*/':

%
9u
'
*

% ( 5: hydraulically smooth walls, no effect of roughness on friction

5 ; %
9u
'
*

% ; 70: transitional roughness, moderate Reynolds-number effect

%
9u
'
*

% < 70: fully rough flow, sublayer totally broken up and friction
independent of Reynolds number

For fully rough flow, 9+ < 70, the log-law downshift *B in Fig. 6.12a is

*B ! %
6
1

% ln 9+ - 3.5 (6.61)
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The Moody Chart

and the logarithm law modified for roughness becomes

u+ ! %
6
1

% ln y+ + B - *B ! %
6
1

% ln %
y
9

% + 8.5 (6.62)

The viscosity vanishes, and hence fully rough flow is independent of the Reynolds num-
ber. If we integrate Eq. (6.62) to obtain the average velocity in the pipe, we obtain

%
u
V
*
% ! 2.44 ln %

d
9

% + 3.2

or %
f1
1
/2% ! -2.0 log %

3
9/
.
d
7
% fully rough flow (6.63)

There is no Reynolds-number effect; hence the head loss varies exactly as the square
of the velocity in this case. Some numerical values of friction factor may be listed:

9/d 0.00001 0.0001 0.001 0.01 0.05

f 0.00806 0.0120 0.0196 0.0379 0.0716

The friction factor increases by 9 times as the roughness increases by a factor of 5000.
In the transitional-roughness region, sand grains behave somewhat differently from
commercially rough pipes, so Fig. 6.12b has now been replaced by the Moody chart.

In 1939 to cover the transitionally rough range, Colebrook [9] combined the smooth-
wall [Eq. (6.54)] and fully rough [Eq. (6.63)] relations into a clever interpolation for-
mula

%
f1
1
/2% ! -2.0 log #%

3
9/
.
d
7
% + %

R
2
ed

.5
f
1
1/2%$ (6.64)

This is the accepted design formula for turbulent friction. It was plotted in 1944 by
Moody [8] into what is now called the Moody chart for pipe friction (Fig. 6.13). The
Moody chart is probably the most famous and useful figure in fluid mechanics. It is
accurate to = 15 percent for design calculations over the full range shown in Fig. 6.13.
It can be used for circular and noncircular (Sec. 6.6) pipe flows and for open-channel
flows (Chap. 10). The data can even be adapted as an approximation to boundary-layer
flows (Chap. 7).

Equation (6.64) is cumbersome to evaluate for f if Red is known, although it easily yields
to the EES Equation Solver. An alternate explicit formula given by Haaland [33] as

%
f1
1
/2% ! -1.8 log &%

R
6.

e
9
d

% + #%
3
9/
.
d
7
%$

1.11

' (6.64a)

varies less than 2 percent from Eq. (6.64).
The shaded area in the Moody chart indicates the range where transition from lam-

inar to turbulent flow occurs. There are no reliable friction factors in this range, 2000 (
Red ( 4000. Notice that the roughness curves are nearly horizontal in the fully rough
regime to the right of the dashed line.

From tests with commercial pipes, recommended values for average pipe roughness
are listed in Table 6.1.
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Fig. 6.13 The Moody chart for pipe
friction with smooth and rough
walls. This chart is identical to Eq.
(6.64) for turbulent flow. (From
Ref. 8, by permission of the ASME.)
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Table 6.1 Recommended
Roughness Values for Commercial
Ducts

!

Material Condition ft mm Uncertainty, %

Steel Sheet metal, new 0.00016 0.05 = 60
Stainless, new 0.000007 0.002 = 50
Commercial, new 0.00015 0.046 = 30
Riveted 0.01 3.0 = 70
Rusted 0.007 2.0 = 50

Iron Cast, new 0.00085 0.26 = 50
Wrought, new 0.00015 0.046 = 20
Galvanized, new 0.0005 0.15 = 40
Asphalted cast 0.0004 0.12 = 50

Brass Drawn, new 0.000007 0.002 = 50
Plastic Drawn tubing 0.000005 0.0015 = 60
Glass — Smooth Smooth
Concrete Smoothed 0.00013 0.04 = 60

Rough 0.007 2.0 = 50
Rubber Smoothed 0.000033 0.01 = 60
Wood Stave 0.0016 0.5 = 40

Values of (Vd) for water at 60°F (velocity, ft/s × diameter, in)
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EXAMPLE 6.63

Compute the loss of head and pressure drop in 200 ft of horizontal 6-in-diameter asphalted cast-
iron pipe carrying water with a mean velocity of 6 ft/s.

Solution

One can estimate the Reynolds number of water and air from the Moody chart. Look across the
top of the chart to V (ft/s) " d (in) ! 36, and then look directly down to the bottom abscissa to
find that Red(water) ! 2.7 " 105. The roughness ratio for asphalted cast iron (9 ! 0.0004 ft) is

%
d
9

% ! ! 0.0008

Find the line on the right side for 9/d ! 0.0008, and follow it to the left until it intersects the
vertical line for Re ! 2.7 " 105. Read, approximately, f ! 0.02 [or compute f ! 0.0197 from
Eq. (6.64a)]. Then the head loss is

hf ! f %
L
d

% %
2
V
g

2

% ! (0.02)%
2
0
0
.5
0

% %
2(3

(6
2.

f
2
t/

f
s
t
)
/

2

s2)
% ! 4.5 ft Ans.

The pressure drop for a horizontal pipe (z1 ! z2) is

*p ! #ghf ! (62.4 lbf/ft3)(4.5 ft) ! 280 lbf/ft2 Ans.

Moody points out that this computation, even for clean new pipe, can be considered accurate
only to about = 10 percent.

EXAMPLE 6.7

Oil, with # ! 900 kg/m3 and ' ! 0.00001 m2/s, flows at 0.2 m3/s through 500 m of 200-mm-
diameter cast-iron pipe. Determine (a) the head loss and (b) the pressure drop if the pipe slopes
down at 10° in the flow direction.

Solution

First compute the velocity from the known flow rate

V ! %
.
Q
R2% ! %

.
0
(
.
0
2
.1
m

m

3/s
)2% ! 6.4 m/s

Then the Reynolds number is

Red ! %
V
'
d
% !%

(6
0
.4
.0

m
00

/
0
s)
1
(0

m
.2

2/
m
s

)
%! 128,000

From Table 6.1, 9 ! 0.26 mm for cast-iron pipe. Then

%
d
9

% ! %
0
2
.
0
2
0
6

m
m

m
m

% ! 0.0013

0.0004
%

%1
6
2%
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6.5 Three Types of Pipe-Flow
Problems

Enter the Moody chart on the right at 9/d ! 0.0013 (you will have to interpolate), and move to
the left to intersect with Re ! 128,000. Read f ! 0.0225 [from Eq. (6.64) for these values we
could compute f ! 0.0227]. Then the head loss is

hf ! f %
L
d

% %
2
V
g

2

% ! (0.0225) %
5
0
0
.2
0

m
m

%%
2
(
(
6
9
.
.
4
81

m
m
/s
/
)
s

2

2)
% ! 117 m Ans. (a)

From Eq. (6.25) for the inclined pipe,

hf ! %
*
#g

p
% + z1 - z2 ! %

*
#g

p
% + L sin 10°

or *p ! #g[hf - (500 m) sin 10°] ! #g(117 m - 87 m)

! (900 kg/m3)(9.81 m/s2)(30 m) ! 265,000 kg/(m & s2) ! 265,000 Pa Ans. (b)

EXAMPLE 6.8

Repeat Example 6.5 to see whether there is any possible turbulent-flow solution for a smooth-
walled pipe.

Solution

In Example 6.5 we estimated a head loss hf ! 1.66 ft, assuming laminar exit flow (8 ! 2.0). For
this condition the friction factor is

f ! hf %
L
d

% %
2
V
g
2% ! (1.66 ft) ! 0.0388

For laminar flow, Red ! 64/f ! 64/0.0388 ! 1650, as we showed in Example 6.5. However, from
the Moody chart (Fig. 6.13), we see that f ! 0.0388 also corresponds to a turbulent smooth-wall
condition, at Red ! 4500. If the flow actually were turbulent, we should change our kinetic-
energy factor to 8 ! 1.06 [Eq. (3.73)], whence the corrected hf ! 1.82 ft and f ! 0.0425. With
f known, we can estimate the Reynolds number from our formulas:

Red ! 3250 [Eq. (6.54)] or Red ! 3400 [Eq. (6.55b)]

So the flow might have been turbulent, in which case the viscosity of the fluid would have been

$ ! %
#
R
V
e
d

d
% !%

1.80(3
3
.3
3
2
0
)
0
(0.004)
%! 7.2 " 10-6 slug/(ft & s) Ans.

This is about 55 percent less than our laminar estimate in Example 6.5. The moral is to keep the
capillary-flow Reynolds number below about 1000 to avoid such duplicate solutions.

The Moody chart (Fig. 6.13) can be used to solve almost any problem involving fric-
tion losses in long pipe flows. However, many such problems involve considerable it-
eration and repeated calculations using the chart because the standard Moody chart is
essentially a head-loss chart. One is supposed to know all other variables, compute

(0.004 ft)(2)(32.2 ft/s2)
%%%

(1.0 ft)(3.32 ft/s)2
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Type 2 Problem:
Find the Flow Rate

Red, enter the chart, find f, and hence compute hf. This is one of three fundamental
problems which are commonly encountered in pipe-flow calculations:

1. Given d, L, and V or Q, #, $, and g, compute the head loss hf (head-loss prob-
lem).

2. Given d, L, hf, #, $, and g, compute the velocity V or flow rate Q (flow-rate
problem).

3. Given Q, L, hf, #, $, and g, compute the diameter d of the pipe (sizing problem).

Only problem 1 is well suited to the Moody chart. We have to iterate to compute velocity
or diameter because both d and V are contained in the ordinate and the abscissa of the chart.

There are two alternatives to iteration for problems of type 2 and 3: (a) preparation
of a suitable new Moody-type chart (see Prob. 6.62 and 6.73); or (b) the use of solver
software, especially the Engineering Equation Solver, known as EES [47], which gives
the answer directly if the proper data are entered. Examples 6.9 and 6.11 include the
EES approach to these problems.

Even though velocity (or flow rate) appears in both the ordinate and the abscissa on
the Moody chart, iteration for turbulent flow is nevertheless quite fast, because f varies
so slowly with Red. Alternately, in the spirit of Example 5.7, we could change the scal-
ing variables to (#, $, d) and thus arrive at dimensionless head loss versus dimension-
less velocity. The result is4

> ! fcn(Red) where > ! %
g
L
d
'

3h
2

f
% ! %

f R
2
ed

2

% (6.65)

Example 5.7 did this and offered the simple correlation > ! 0.155 Red
1.75, which is valid

for turbulent flow with smooth walls and Red ; 1 E5.
A formula valid for all turbulent pipe flows is found by simply rewriting the Cole-

brook interpolation, Eq. (6.64), in the form of Eq. (6.65):

Red ! -(8>)1/2 log #%
3
9/
.
d
7
% + $ > ! %

g
L
d
'

3h
2

f
% (6.66)

Given >, we compute Red (and hence velocity) directly. Let us illustrate these two ap-
proaches with the following example.

EXAMPLE 6.9

Oil, with # ! 950 kg/m3 and ' ! 2 E-5 m2/s, flows through a 30-cm-diameter pipe 100 m long with
a head loss of 8 m. The roughness ratio is 9/d ! 0.0002. Find the average velocity and flow rate.

Direct Solution

First calculate the dimensionless head-loss parameter:

> ! %
g

L

d

'

3h
2

f
% ! ! 5.30 E7

(9.81 m/s2)(0.3 m)3(8.0 m)
%%%

(100 m)(2 E-5 m2/s)2

1.775%
)>%
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Now enter Eq. (6.66) to find the Reynolds number:

Red ! -[8(5.3 E7)]1/2 log #%0.0
3
0
.7
02
% + %

)
1
5%
.7
.3%
75

E%7%
%$ ! 72,600

The velocity and flow rate follow from the Reynolds number:

V ! %
' R

d
ed% ! ! 4.84 m/s

Q ! V%
.
4

%d2 ! #4.84%
m
s
%$%

.
4

%(0.3 m)2 ! 0.342 m3/s Ans.

No iteration is required, but this idea falters if additional losses are present.

Iterative Solution

By definition, the friction factor is known except for V:

f ! hf %
L
d

% %
2
V
g
2% ! (8 m)#%100.30 m

m
%$&%2(9.8

V
1

2
m/s2)
%' or f V2 ! 0.471 (SI units)

To get started, we only need to guess f, compute V ! )0%.4%7%1%/f%, then get Red, compute a better
f from the Moody chart, and repeat. The process converges fairly rapidly. A good first guess is
the “fully rough” value for 9/d ! 0.0002, or f ! 0.014 from Fig. 6.13. The iteration would be as
follows:

Guess f ! 0.014, then V ! )0%.4%7%1%/0%.0%1%4% ! 5.80 m/s and Red ! Vd/' ! 87,000. At Red !
87,000 and 9/d ! 0.0002, compute fnew ! 0.0195 [Eq. (6.64)].

New f ! 0.0195, V ! )0%.4%8%1%/0%.0%1%9%5% ! 4.91 m/s and Red ! Vd/' ! 73,700. At Red !
73,700 and 9/d ! 0.0002, compute fnew ! 0.0201 [Eq. (6.64)].

Better f ! 0.0201, V ! )0%.4%7%1%/0%.0%2%0%1% ! 4.84 m/s and Red ! 72,600. At Red ! 72,600 and
9/d ! 0.0002, compute fnew ! 0.0201 [Eq. (6.64)].

We have converged to three significant figures. Thus our iterative solution is

V ! 4.84 m/s

Q ! V#%
.
4

%$d2 ! (4.84)#%
.
4

%$(0.3)2 ! 0.342 m3/s Ans.

The iterative approach is straightforward and not too onerous, so it is routinely used by engi-
neers. Obviously this repetitive procedure is ideal for a personal computer.

Engineering Equation Solver (EES) Solution

In EES, one simply enters the data and the appropriate equations, letting the software do the
rest. Correct units must of course be used. For the present example, the data could be entered
as SI:

rho=950 nu=2E-5 d=0.3 L=100 epsod=0.0002 hf=8.0 g=9.81

The appropriate equations are the Moody formula (6.64) plus the definitions of Reynolds num-

(2 E-5 m2/s)(72,600)
%%%

0.3 m
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ber, volume flow rate as determined from velocity, and the Darcy head-loss formula (6.30):

Re ! V!d/nu

Q ! V!pi!d^2/4

f ! (-2.0!log10(epsod/3.7 + 2.51/Re/f^0.5))^(-2)

hf ! f!L/d!V^2/2/g

EES understands that “pi” represents 3.141593. Then hit “SOLVE” from the menu. If errors have
been entered, EES will complain that the system cannot be solved and attempt to explain why.
Otherwise, the software will iterate, and in this case EES prints the correct solution:

Q=0.342 V=4.84 f=0.0201 Re=72585

The units are spelled out in a separate list as [m, kg, s, N]. This elegant approach to engi-
neering problem-solving has one drawback, namely, that the user fails to check the solution
for engineering viability. For example, are the data typed correctly? Is the Reynolds number
turbulent?

EXAMPLE 6.10

Work Moody’s problem (Example 6.6) backward, assuming that the head loss of 4.5 ft is known
and the velocity (6.0 ft/s) is unknown.

Direct Solution

Find the parameter >, and compute the Reynolds number from Eq. (6.66):

> ! %
g

L

d

'

3h
2

f
% ! ! 7.48 E8

Eq. (6.66): Red ! -[8(7.48 E8)]1/2 log #%0.0
3
0
.7
08
% + %

)
1
7%
.
.
7
4%
7
8%
5
E%8%

%$ ! 274,800

Then V ! ' %
R
d
ed% !%

(1.1 E-5
0
)
.
(
5
274,800)
%! 6.05 ft/s Ans.

We did not get 6.0 ft/s exactly because the 4.5-ft head loss was rounded off in Example 6.6.

Iterative Solution

As in Eq. (6.9) the friction factor is related to velocity:

f ! hf %
L
d

% %
2
V
g
2% ! (4.5 ft)#%200.50 f

f
t
t

%$&%2(32.
V
2

2
ft/s2)
%' ! %

0.7
V
2
2
45
%

or V ! )0%.7%2%4%5%/f%

Knowing 9/d ! 0.0008, we can guess f and iterate until the velocity converges. Begin with the
fully rough estimate f ! 0.019 from Fig. 6.13. The resulting iterates are

f1 ! 0.019: V1 ! )0%.7%2%4%5%/f%1% ! 6.18 ft/s Red1
! %

V
'
d
% ! 280,700

(32.2 ft/s2)(0.5 ft)3(4.5 ft)
%%%

(200 ft)(1.1 E-5 ft2/s)2
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Type 3 Problem: Find the Pipe
Diameter

f2 ! 0.0198: V2 ! 6.05 ft/s Red2
! 274,900

f3 ! 0.01982: V3 ! 6.046 ft/s Ans.

The calculation converges rather quickly to the same result as that obtained through direct com-
putation.

The Moody chart is especially awkward for finding the pipe size, since d occurs in all
three parameters f, Red, and 9/d. Further, it depends upon whether we know the ve-
locity or the flow rate. We cannot know both, or else we could immediately compute
d ! )4%Q%/(%.%V%)%.

Let us assume that we know the flow rate Q. Note that this requires us to redefine
the Reynolds number in terms of Q:

Red ! %
V
'
d
% ! %

.
4
d
Q
'

% (6.67)

Then, if we choose (Q, #, $) as scaling parameters (to eliminate d), we obtain the func-
tional relationship

Red ! %
.
4
d
Q
'

% ! fcn#%
L

g

'

h
5
f

%, %
9
Q
'
%$ (6.68)

and can thus solve d when the right-hand side is known. Unfortunately, the writer knows
of no formula for this relation, nor is he able to rearrange Eq. (6.64) into the explicit
form of Eq. (6.68). One could recalculate and plot the relation, and indeed an inge-
nious “pipe-sizing” plot is given in Ref. 13. Here it seems reasonable to forgo a plot
or curve fitted formula and to simply set up the problem as an iteration in terms of the
Moody-chart variables. In this case we also have to set up the friction factor in terms
of the flow rate:

f ! hf %
L
d

% %
V
2g

2% ! %
.
8

2

% %
g

L

h

Q
f d

2

5

% (6.69)

The following two examples illustrate the iteration.

EXAMPLE 6.11

Work Example 6.9 backward, assuming that Q ! 0.342 m3/s and 9 ! 0.06 mm are known but
that d (30 cm) is unknown. Recall L ! 100 m, # ! 950 kg/m3, ' ! 2 E-5 m2/s, and hf ! 8 m.

Iterative Solution

First write the diameter in terms of the friction factor:

f ! %
.
8

2

% ! 8.28d5 or d ! 0.655f1/5 (1)

in SI units. Also write the Reynolds number and roughness ratio in terms of the diameter:

(9.81 m/s2)(8 m)d5

%%%
(100 m)(0.342 m3/s)2
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Red !%
.
4
(
(
2
0.

E
34

-5
2

m
m

2

3

/
/
s
s
)
)
d

%! %
21,

d
800
% (2)

%
d
9

% ! %
6 E

d
-5 m
% (3)

Guess f, compute d from (1), then compute Red from (2) and 9/d from (3), and compute a bet-
ter f from the Moody chart or Eq. (6.64). Repeat until (fairly rapid) convergence. Having no ini-
tial estimate for f, the writer guesses f ! 0.03 (about in the middle of the turbulent portion of
the Moody chart). The following calculations result:

f ! 0.03 d ! 0.655(0.03)1/5 ! 0.325 m

Red ! %
2
0
1
.
,
3
8
2
0
5
0

% ! 67,000 %
d
9

% ! 1.85 E-4

Eq. (6.54): fnew ! 0.0203 then dnew ! 0.301 m

Red,new ! 72,500 %
d
9

% ! 2.0 E-4

Eq. (6.54): fbetter ! 0.0201 and d ! 0.300 m Ans.

The procedure has converged to the correct diameter of 30 cm given in Example 6.9.

EES Solution

For an EES solution, enter the data and the appropriate equations. The diameter is unknown.
Correct units must of course be used. For the present example, the data should use SI units:

rho=950 nu=2E-5 L=100 eps=6E-5 hf=8.0 g=9.81 Q=0.342

The appropriate equations are the Moody formula, the definition of Reynolds number, vol-
ume flow rate as determined from velocity, the Darcy head-loss formula, and the roughness
ratio:

Re ! V!d/nu

Q ! V!pi!d^2/4

f ! (-2.0!log10(epsod/3.7 + 2.51/Re/f^0.5))^(-2)

hf ! f!L/d!V^2/2/g

epsod ! eps/d

Hit Solve from the menu. Unlike Example 6.9, this time EES complains that the system can-
not be solved and reports “logarithm of a negative number.” The reason is that we allowed
EES to assume that f could be a negative number. Bring down Variable Information from the
menu and change the limits of f so that it cannot be negative. EES agrees and iterates to the
solution:

d ! 0.300 V ! 4.84 f ! 0.0201 Re ! 72,585

The unit system is spelled out as (m, kg, s, N). As always when using software, the user should
check the solution for engineering viability. For example, is the Reynolds number turbulent?
(Yes)
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6.6 Flow in Noncircular Ducts5

The Hydraulic Diameter

EXAMPLE 6.12

Work Moody’s problem, Example 6.6, backward to find the unknown (6 in) diameter if the flow
rate Q ! 1.18 ft3/s is known. Recall L ! 200 ft, 9 ! 0.0004 ft, and ' ! 1.1 E-5 ft2/s.

Solution

Write f, Red, and 9/d in terms of the diameter:

f ! %
.
8

2

% %
g

L

h

Q
fd

2

5

% ! %
.
8

2

% ! 0.642d5 or d ! 1.093 f1/5 (1)

Red !%
.(1

4
.
(
1
1.

E
1
-
8
5

f
f
t3

t2
/s
/s
)
) d

%! %
136

d
,600
% (2)

%
d
9

% ! %
0.00

d
04 ft
% (3)

with everything in BG units, of course. Guess f ; compute d from (1), Red from (2), and 9/d from
(3); and then compute a better f from the Moody chart. Repeat until convergence. The writer tra-
ditionally guesses an initial f ! 0.03:

f ! 0.03 d ! 1.093(0.03)1/5 ! 0.542 ft

Red ! %
13
0
6
.5
,6
4
0
2
0

% ! 252,000 %
d
9

% ! 7.38 E-4

fnew ! 0.0196 dnew ! 0.498 ft Red ! 274,000 %
d
9

% ! 8.03 E-4

fbetter ! 0.0198 d ! 0.499 ft Ans.

Convergence is rapid, and the predicted diameter is correct, about 6 in. The slight discrepancy
(0.499 rather than 0.500 ft) arises because hf was rounded to 4.5 ft.

In discussing pipe-sizing problems, we should remark that commercial pipes are
made only in certain sizes. Table 6.2 lists standard water-pipe sizes in the United States.
If the sizing calculation gives an intermediate diameter, the next largest pipe size should
be selected.

If the duct is noncircular, the analysis of fully developed flow follows that of the cir-
cular pipe but is more complicated algebraically. For laminar flow, one can solve the
exact equations of continuity and momentum. For turbulent flow, the logarithm-law ve-
locity profile can be used, or (better and simpler) the hydraulic diameter is an excel-
lent approximation.

For a noncircular duct, the control-volume concept of Fig. 6.10 is still valid, but the
cross-sectional area A does not equal .R2 and the cross-sectional perimeter wetted by
the shear stress ! does not equal 2.R. The momentum equation (6.26) thus becomes

*p A + #gA *L sin 7 - 4%w! *L ! 0

(32.2 ft/s2)(4.5 ft)d5

%%%
(200 ft)(1.18 ft3/s)2
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Table 6.2 Nominal and Actual
Sizes of Schedule 40 Wrought-
Steel Pipe*

Nominal size, in Actual ID, in

1%18% 0.269
1%14% 0.364
1%38% 0.493
1%12% 0.622
1%34% 0.824
1%34% 1.049
1%12% 1.610
2%34% 2.067
2%12% 2.469
3%34% 3.068

*Nominal size within 1 percent for 4 in or
larger.

5This section may be omitted without loss of continuity.



or hf ! %
*
#g

p
% + *z ! %

4
#
%
g
w% %

A
*
/!
L
% (6.70)

This is identical to Eq. (6.27) except that (1) the shear stress is an average value inte-
grated around the perimeter and (2) the length scale A/! takes the place of the pipe
radius R. For this reason a noncircular duct is said to have a hydraulic radius Rh, de-
fined by

Rh ! %
!
A

% ! (6.71)

This concept receives constant use in open-channel flow (Chap. 10), where the chan-
nel cross section is almost never circular. If, by comparison to Eq. (6.29) for pipe flow,
we define the friction factor in terms of average shear

fNCD ! %
8
#
4
V
%w

2% (6.72)

where NCD stands for noncircular duct and V ! Q/A as usual, Eq. (6.70) becomes

hf ! f %
4
L
Rh
% %

2
V
g

2

% (6.73)

This is equivalent to Eq. (6.30) for pipe flow except that d is replaced by 4Rh. There-
fore we customarily define the hydraulic diameter as

Dh ! %
4
!
A
% !%

wett
4
ed

"
pe

a
r
r
i
e
m
a

eter
%! 4Rh (6.74)

We should stress that the wetted perimeter includes all surfaces acted upon by the shear
stress. For example, in a circular annulus, both the outer and the inner perimeter should
be added. The fact that Dh equals 4Rh is just one of those things: Chalk it up to an en-
gineer’s sense of humor. Note that for the degenerate case of a circular pipe, Dh !
4.R2/(2.R) ! 2R, as expected.

We would therefore expect by dimensional analysis that this friction factor f, based
upon hydraulic diameter as in Eq. (6.72), would correlate with the Reynolds number
and roughness ratio based upon the hydraulic diameter

f ! F#%
V

'
Dh%, %

D
9

h
%$ (6.75)

and this is the way the data are correlated. But we should not necessarily expect the
Moody chart (Fig. 6.13) to hold exactly in terms of this new length scale. And it does
not, but it is surprisingly accurate:

%
R
6
e
4
Dh

% = 40% laminar flow
f ! (6.76)

fMoody#ReDh
, %

D
9

h
%$ = 15% turbulent flow

Now let us look at some particular cases.

cross-sectional area
%%%

wetted perimeter
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Flow between Parallel Plates As shown in Fig. 6.14, flow between parallel plates a distance h apart is the limiting
case of flow through a very wide rectangular channel. For fully developed flow, u !
u(y) only, which satisfies continuity identically. The momentum equation in cartesian
coordinates reduces to

0 ! -%
d
d
p
x
% + #gx + %

d
d
4
y
% 4lam ! $%

d
d
u
y
% (6.77)

subject to no-slip conditions: u ! 0 at y ! = h. The laminar-flow solution was given
as an example in Eq. (4.143). Here we also allow for the possibility of a sloping chan-
nel, with a pressure gradient due to gravity. The solution is

u ! %
2
1
$
% &-%

d
d
x
%( p + #gz)'(h2 - y2) (6.78)

If the channel has width b, the volume flow is

Q ! "+h

-h
u(y)b dy ! %

b
3
h
$

3

% &-%
d
d
x
% ( p + #gz)'

or V ! %
b
Q
h
% ! %

3
h
$

2

% &-%
d
d
x
%( p + #gz)' ! %

2
3

% umax (6.79)

Note the difference between a parabola [Eq. (6.79)] and a paraboloid [Eq. (6.43)]: the
average is two-thirds of the maximum velocity in plane flow and one-half in axisym-
metric flow.

The wall shear stress in developed channel flow is a constant:

4w ! $(%
d
d
u
y
%(

y!+h

! h&-%
d
d
x
%(p + #gz)' (6.80)

This may be nondimensionalized as a friction factor:

f ! %
#
8
V
4w

2% ! %
2
#
4
V
$
h

% ! %
R
2
e
4
h

% (6.81)

These are exact analytic laminar-flow results, so there is no reason to resort to the 
hydraulic-diameter concept. However, if we did use Dh, a discrepancy would arise. The
hydraulic diameter of a wide channel is
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u max

2 h

Y

y

y = +h

u ( y)

x

y = – h

b → ∞

Fig. 6.14 Fully developed flow be-
tween parallel plates.



Dh ! %
4
#
A
% ! lim

b→"
%
2
4
b
(2
+
bh

4
)
h

% ! 4h (6.82)

or twice the distance between the plates. Substituting into Eq. (6.81), we obtain the in-
teresting result

Parallel plates: flam ! %
#V

96
(4
$
h)

% ! %
R
9
e
6
Dh

% (6.83)

Thus, if we could not work out the laminar theory and chose to use the approximation
f ! 64/ReDh

, we would be 33 percent low. The hydraulic-diameter approximation is
relatively crude in laminar flow, as Eq. (6.76) states.

Just as in circular-pipe flow, the laminar solution above becomes unstable at about
ReDh

! 2000; transition occurs and turbulent flow results.
For turbulent flow between parallel plates, we can again use the logarithm law,

Eq. (6.21), as an approximation across the entire channel, using not y but a wall coor-
dinate Y, as shown in Fig. 6.14:

%
u
u
(Y
*

)
% ! %

6
1

% ln %
Y

'
u*
% + B 0 ( Y ( h (6.84)

This distribution looks very much like the flat turbulent profile for pipe flow in Fig.
6.11b, and the mean velocity is

V ! %
1
h

% "h

0
u dY ! u*#%

6
1

% ln %
hu
'
*

% + B - %
6
1

%$ (6.85)

Recalling that V/u* ! (8/f)1/2, we see that Eq. (6.85) is equivalent to a parallel-plate
friction law. Rearranging and cleaning up the constant terms, we obtain

%
f
1
1/2% ! 2.0 log (ReDh

f 1/2) - 1.19 (6.86)

where we have introduced the hydraulic diameter Dh ! 4h. This is remarkably close
to the pipe-friction law, Eq. (6.54). Therefore we conclude that the use of the hydraulic
diameter in this turbulent case is quite successful. That turns out to be true for other
noncircular turbulent flows also.

Equation (6.86) can be brought into exact agreement with the pipe law by rewrit-
ing it in the form

%
f
1
1/2% ! 2.0 log (0.64 ReDh

f 1/2) - 0.8 (6.87)

Thus the turbulent friction is predicted most accurately when we use an effective di-
ameter Deff equal to 0.64 times the hydraulic diameter. The effect on f itself is much
less, about 10 percent at most. We can compare with Eq. (6.83) for laminar flow, which
predicted

Parallel plates: Deff ! %
6
9
4
6
%Dh ! %

2
3

%Dh (6.88)

This close resemblance (0.64Dh versus 0.667Dh) occurs so often in noncircular duct
flow that we take it to be a general rule for computing turbulent friction in ducts:

Deff ! Dh ! %
4
!
A
% reasonable accuracy
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Part (a)

Deff(laminar theory) extreme accuracy (6.89)

Jones [10] shows that the effective-laminar-diameter idea collapses all data for rectan-
gular ducts of arbitrary height-to-width ratio onto the Moody chart for pipe flow. We
recommend this idea for all noncircular ducts.

EXAMPLE 6.13

Fluid flows at an average velocity of 6 ft/s between horizontal parallel plates a distance of 2.4
in apart. Find the head loss and pressure drop for each 100 ft of length for # ! 1.9 slugs/ft3 and
(a) ' ! 0.00002 ft3/s and (b) ' ! 0.002 ft3/s. Assume smooth walls.

Solution

The viscosity $ ! #' ! 3.8 " 10-5 slug/(ft & s). The spacing is 2h ! 2.4 in ! 0.2 ft, and Dh !
4h ! 0.4 ft. The Reynolds number is

ReDh ! %
V

'
Dh% !%

(6
0
.
.
0
00

ft
0
/s
0
)
2
(0

f
.
t
4
2/s

ft)
%! 120,000

The flow is therefore turbulent. For reasonable accuracy, simply look on the Moody chart (Fig.
6.13) for smooth walls

f ! 0.0173 hf ! f %
D
L

h
% %

V
2g

2

% ! 0.0173 %
1
0
0
.4
0

% %
2
(
(
6
3
.
2
0
.
)
2

2

)
% ! 2.42 ft Ans. (a)

Since there is no change in elevation,

*p ! #ghf ! 1.9(32.2)(2.42) ! 148 lbf/ft2 Ans. (a)

This is the head loss and pressure drop per 100 ft of channel. For more accuracy, take Deff !
%23%Dh from laminar theory; then

Reeff ! %23%(120,000) ! 80,000

and from the Moody chart read f ! 0.0189 for smooth walls. Thus a better estimate is

hf ! 0.0189 %
1
0
0
.4
0

% %
2
(
(
6
3
.
2
0
.
)
2

2

)
% ! 2.64 ft

and *p ! 1.9(32.2)(2.64) ! 161 lbf/ft2 Better ans. (a)

The more accurate formula predicts friction about 9 percent higher.

Compute $ ! #' ! 0.0038 slug/(ft & s). The Reynolds number is 6.0(0.4)/0.002 ! 1200; there-
fore the flow is laminar, since Re is less than 2300.

You could use the laminar-flow friction factor, Eq. (6.83)

flam ! ! %
1
9
2
6
00
% ! 0.08

from which hf ! 0.08 %
1
0
0
.4
0

% %
2
(
(
6
3
.
2
0
.
)
2

2

)
% ! 11.2 ft

and *p ! 1.9(32.2)(11.2) ! 684 lbf/ft2 Ans. (b)

96
%
ReDh
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Part (b)



Flow through a Concentric
Annulus

Alternately you can finesse the Reynolds number and go directly to the appropriate laminar-flow
formula, Eq. (6.79)

V ! %
3
h
$

2

% %
*
L
p
%

or *p ! ! 684 slugs/(ft & s2) ! 684 lbf/ft2

and hf ! %
*
#g

p
% ! %

1.9
6
(
8
3
4
2.2)
% ! 11.2 ft

This is one of those—perhaps unexpected—problems where the laminar friction is greater than
the turbulent friction.

Consider steady axial laminar flow in the annular space between two concentric cylin-
ders, as in Fig. 6.15. There is no slip at the inner (r ! b) and outer radius (r ! a). For
u ! u(r) only, the governing relation is Eq. (6.34)

%
d
d
r
%#r$%

d
d
u
r
%$ ! Kr K ! %

d
d
x
%(p + #gz) (6.90)

Integrate this twice

u ! %
1
4

% r2 %
K
$

% + C1 ln r + C2

The constants are found from the two no-slip conditions

u(r ! a) ! 0 ! %
1
4

% a2 %
K
$

% + C1 ln a + C2

u(r ! b) ! 0 ! %
1
4

% b2 %
K
$

% + C1 ln b + C2

The final solution for the velocity profile is

u ! %
4
1
$
% &-%

d
d
x
% (p + #gz)'&a2 - r2 + %

a
ln

2

(
-
b/

b
a

2

)
% ln %

a
r

%' (6.91)

3(6.0 ft/s)[0.0038 slug/(ft & s)](100 ft)
%%%%

(0.1 ft)2
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Fig. 6.15 Fully developed flow
through a concentric annulus.

u(r)

u(r)

r

r = b

r = a

x



The volume flow is given by

Q ! "a

b
u2.r dr ! %

8
.
$
% &-%

d
d
x
% (p + #gz)'&a4 - b4 - %

(a
ln

2 -
(a/

b
b

2

)
)2

%' (6.92)

The velocity profile u(r) resembles a parabola wrapped around in a circle to form a
split doughnut, as in Fig. 6.15. The maximum velocity occurs at the radius

r0 ! &%2
a
l

2

n
-
(a

b
/b

2

)
%'

1/2
u ! umax (6.93)

This maximum is closer to the inner radius but approaches the midpoint between cylin-
ders as the clearance a - b becomes small. Some numerical values are as follows:

%
b
a

% 0.01 0.1 0.2 0.5 0.8 0.9 0.99

%
r
a
0
-
-

b
b

% 0.323 0.404 0.433 0.471 0.491 0.496 0.499

Also, as the clearance becomes small, the profile approaches a parabolic distribution,
as if the flow were between two parallel plates [Eq. (4.143)].

It is confusing to base the friction factor on the wall shear because there are two
shear stresses, the inner stress being greater than the outer. It is better to define f with
respect to the head loss, as in Eq. (6.73),

f ! hf %
D
L

h% %
2
V
g
2% where V ! %

.(a2
Q
- b2)
% (6.94)

The hydraulic diameter for an annulus is

Dh ! %
4
2
.
.
(a
(a

2 -
+

b
b

2

)
)

% ! 2(a - b) (6.95)

It is twice the clearance, rather like the parallel-plate result of twice the distance be-
tween plates [Eq. (6.82)].

Substituting hf, Dh, and V into Eq. (6.94), we find that the friction factor for lami-
nar flow in a concentric annulus is of the form

f ! > ! (6.96)

The dimensionless term > is a sort of correction factor for the hydraulic diameter. We
could rewrite Eq. (6.96) as

Concentric annulus: f ! %
R
6
e
4
eff
% Reeff ! %

1
>

% ReDh
(6.97)

Some numerical values of f ReDh and Deff/Dh ! 1/> are given in Table 6.3.
For turbulent flow through a concentric annulus, the analysis might proceed by patch-

ing together two logarithmic-law profiles, one going out from the inner wall to meet
the other coming in from the outer wall. We omit such a scheme here and proceed di-
rectly to the friction factor. According to the general rule proposed in Eq. (6.89), tur-
bulent friction is predicted with excellent accuracy by replacing d in the Moody chart

(a - b)2(a2 - b2)
%%%%
a4 - b4 - (a2 - b2)2/ln (a/b)

64>
%
ReDh
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E6.14

by Deff ! 2(a - b)/>, with values listed in Table 6.3.6 This idea includes roughness also
(replace 9/d in the chart by 9/Deff). For a quick design number with about 10 percent
accuracy, one can simply use the hydraulic diameter Dh ! 2(a - b).

EXAMPLE 6.14

What should the reservoir level h be to maintain a flow of 0.01 m3/s through the commercial
steel annulus 30 m long shown in Fig. E6.14? Neglect entrance effects and take # ! 1000 kg/m3

and ' ! 1.02 " 10-6 m2/s for water.
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Table 6.3 Laminar Friction Factors
for a Concentric Annulus

b/a f ReDh
Deff/Dh ! 1/>

0.0 64.0 1.000
0.00001 70.09 0.913
0.0001 71.78 0.892
0.001 74.68 0.857
0.01 80.11 0.799
0.05 86.27 0.742
0.1 89.37 0.716
0.2 92.35 0.693
0.4 94.71 0.676
0.6 95.59 0.670
0.8 95.92 0.667
1.0 96.0 0.667

1

2

Water L = 30 m

Q, V

a = 5 cm
b = 3 cm

h = ?

Solution

Compute the average velocity and hydraulic diameter

V ! %
Q
A

% ! ! 1.99 m/s

Dh ! 2(a - b) ! 2(0.05 - 0.03) m ! 0.04 m

Apply the steady-flow energy equation between sections 1 and 2:

%
p
#
1% + %

1
2

%V1
2 + gz1 ! #%

p
#
2% + %

1
2

%V2
2 + gz2$ + ghf

But p1 ! p2 ! pa, V1 ! 0, and V2 ! V in the pipe. Therefore solve for

hf ! f %
D
L

h
% %

2
V
g

2

% ! z1 - z2 - %
2
V
g

2

%

But z1 - z2 ! h, the desired reservoir height. Thus, finally,

h ! %
2
V
g

2

% #1 + f %
D
L

h
%$ (1)

Since V, L, and Dh are known, our only remaining problem is to compute the annulus friction
factor f. For a quick approximation, take Deff ! Dh ! 0.04 m. Then

ReDh
! %

V
'
Dh% ! %

1
1
.0
.9
2
9
"
(0.

1
0
0
4
-

)
6% ! 78,000

%
D
9

h
% ! %

0.
4
0
0
46

m
m
m

m
% ! 0.00115

0.01 m3/s
%%%
.[(0.05 m)2 - (0.03 m)2]

6Jones and Leung [44] show that data for annular flow also satisfy the effective-laminar-diameter idea.



Other Noncircular Cross Sections

where 9 ! 0.046 mm has been read from Table 6.1 for commercial steel surfaces. From the
Moody chart, read f ! 0.0232. Then, from Eq. (1) above,

h ! %
2
(
(
1
9
.9
.8
9
1

m
m

/
/
s
s
)
2

2

)
% #1 + 0.0232 %

0
3
.0
0
4
m
m

%$ ! 3.71 m Crude ans.

For better accuracy, take Deff ! Dh/> ! 0.670Dh ! 2.68 cm, where the correction factor 0.670
has been read from Table 6.3 for b/a ! %35% ! 0.6. Then the corrected Reynolds number and rough-
ness ratio are

Reeff ! %
VD

'
eff% ! 52,300 %

D
9

eff
% ! 0.00172

From the Moody chart, read f ! 0.0257. Then the improved computation for reservoir height is

h ! %
2
(
(
1
9
.9
.8
9
1

m
m

/
/
s
s
)
2

2

)
% #1 + 0.0257 %

0
3
.0
0
4
m
m

%$ ! 4.09 m Better ans.

The uncorrected hydraulic-diameter estimate is about 9 percent low. Note that we do not replace
Dh by Deff in the ratio L/Dh in Eq. (1) since this is implicit in the definition of friction factor.

In principle, any duct cross section can be solved analytically for the laminar-flow ve-
locity distribution, volume flow, and friction factor. This is because any cross section
can be mapped onto a circle by the methods of complex variables, and other powerful
analytical techniques are also available. Many examples are given by White [3, pp.
119–122], Berker [11], and Olson and Wright [12, pp. 315–317]. Reference 34 is de-
voted entirely to laminar duct flow.

In general, however, most unusual duct sections have strictly academic and not com-
mercial value. We list here only the rectangular and isosceles-triangular sections, in
Table 6.4, leaving other cross sections for you to find in the references.

For turbulent flow in a duct of unusual cross section, one should replace d by Dh

on the Moody chart if no laminar theory is available. If laminar results are known,
such as Table 6.4, replace d by Deff ! [64/(f Re)]Dh for the particular geometry of
the duct.

For laminar flow in rectangles and triangles, the wall friction varies greatly, be-
ing largest near the midpoints of the sides and zero in the corners. In turbulent flow
through the same sections, the shear is nearly constant along the sides, dropping off
sharply to zero in the corners. This is because of the phenomenon of turbulent sec-
ondary flow, in which there are nonzero mean velocities v and w in the plane of the
cross section. Some measurements of axial velocity and secondary-flow patterns are
shown in Fig. 6.16, as sketched by Nikuradse in his 1926 dissertation. The secondary-
flow “cells” drive the mean flow toward the corners, so that the axial-velocity con-
tours are similar to the cross section and the wall shear is nearly constant. This is
why the hydraulic-diameter concept is so successful for turbulent flow. Laminar flow
in a straight noncircular duct has no secondary flow. An accurate theoretical predic-
tion of turbulent secondary flow has yet to be achieved, although numerical models
are improving [36].
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Table 6.4 Laminar Friction
Constants f Re for Rectangular and
Triangular Ducts

Rectangular Isosceles triangle

b/a fReDh
:, deg fReDh

0.0 96.00 0 48.0
0.05 89.91 10 51.6
0.1 84.68 20 52.9
0.125 82.34 30 53.3
0.167 78.81 40 52.9
0.25 72.93 50 52.0
0.4 65.47 60 51.1
0.5 62.19 70 49.5
0.75 57.89 80 48.3
1.0 56.91 90 48.0

b
a

2:



Fig. 6.16 Illustration of secondary
turbulent flow in noncircular ducts:
(a) axial mean-velocity contours;
(b) secondary-flow cellular mo-
tions. (After J. Nikuradse, disserta-
tion, Gö ttingen, 1926.)

EXAMPLE 6.15

Air, with # ! 0.00237 slug/ft3 and ' ! 0.000157 ft2/s, is forced through a horizontal square 
9-by 9-in duct 100 ft long at 25 ft3/s. Find the pressure drop if 9 ! 0.0003 ft.

Solution

Compute the mean velocity and hydraulic diameter

V ! %
(0
2
.
5
75

ft3

f
/
t
s
)2% ! 44.4 ft/s

Dh ! %
4
!
A
% ! %

4(
3
8
6
1

i
i
n
n2)

% ! 9 in ! 0.75 ft

From Table 6.4, for b/a ! 1.0, the effective diameter is

Deff ! %
56

6
.
4
91
%Dh ! 0.843 ft

whence Reeff ! %
VD

'
eff% ! %

4
0
4
.
.
0
4
0
(0
0
.
1
8
5
4
7
3)

% ! 239,000

%
D

9

eff
% ! %

0
0
.0
.8
0
4
0
3
3

% ! 0.000356

From the Moody chart, read f ! 0.0177. Then the pressure drop is

*p ! #ghf ! #g #f %
D
L

h
% %

2
V
g

2

%$ ! 0.00237(32.2)&0.0177%
0
1
.
0
7
0
5

% %
2
4
(3
4
2
.4
.2

2

)
%'

or *p ! 5.5 lbf/ft2 Ans.

Pressure drop in air ducts is usually small because of the low density.
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6.7 Minor Losses in Pipe
Systems7

For any pipe system, in addition to the Moody-type friction loss computed for the length
of pipe, there are additional so-called minor losses due to

1. Pipe entrance or exit
2. Sudden expansion or contraction
3. Bends, elbows, tees, and other fittings
4. Valves, open or partially closed
5. Gradual expansions or contractions

The losses may not be so minor; e.g., a partially closed valve can cause a greater pres-
sure drop than a long pipe.

Since the flow pattern in fittings and valves is quite complex, the theory is very
weak. The losses are commonly measured experimentally and correlated with the pipe-
flow parameters. The data, especially for valves, are somewhat dependent upon the par-
ticular manufacturer’s design, so that the values listed here must be taken as average
design estimates [15, 16, 35, 43, 46].

The measured minor loss is usually given as a ratio of the head loss hm ! *p/(#g)
through the device to the velocity head V2/(2g) of the associated piping system

Loss coefficient K ! %
V2

h
/(

m

2g)
% ! (6.98)

Although K is dimensionless, it unfortunately is not correlated in the literature with the
Reynolds number and roughness ratio but rather simply with the raw size of the pipe
in, say, inches. Almost all data are reported for turbulent-flow conditions.

An alternate, and less desirable, procedure is to report the minor loss as if it were
an equivalent length Leq of pipe, satisfying the Darcy friction-factor relation

hm ! f %
L

d
eq
% %

V
2g

2

% ! K %
V
2g

2

%

or Leq ! %
K
f
d
% (6.99)

Although the equivalent length should take some of the variability out of the loss data,
it is an artificial concept and will not be pursued here.

A single pipe system may have many minor losses. Since all are correlated with
V 2/(2g), they can be summed into a single total system loss if the pipe has constant
diameter

*htot ! hf + *hm ! %
2
V
g

2

% #%
f
d
L
% + *K$ (6.100)

Note, however, that we must sum the losses separately if the pipe size changes so that
V2 changes. The length L in Eq. (6.100) is the total length of the pipe axis, including
any bends.

There are many different valve designs in commercial use. Figure 6.17 shows five
typical designs: (a) the gate, which slides down across the section; (b) the globe, which
closes a hole in a special insert; (c) the angle, similar to a globe but with a 90° turn;

*p
%

%12%#V 2
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7This section may be omitted without loss of continuity.



Fig. 6.17 Typical commercial valve
geometries: (a) gate valve;
(b) globe valve; (c) angle valve;
(d) swing-check valve; (e) disk-
type gate valve.

(d) the swing-check valve, which allows only one-way flow; and (e) the disk, which
closes the section with a circular gate. The globe, with its tortuous flow path, has the
highest losses when fully open. Many excellent details about these and other valves
are given in the handbook by Lyons [35].

Table 6.5 lists loss coefficients K for four types of valve, three angles of elbow fit-
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Table 6.5 Resistance Coefficients
K ! hm/[V2/(2g)] for Open Valves,
Elbows, and Tees

Nominal diameter, in

Screwed Flanged

%12% 1 2 4 1 2 4 8 20

Valves (fully open):
Globe 14 8.2 6.9 5.7 13 8.5 6.0 5.8 5.5
Gate 0.30 0.24 0.16 0.11 0.80 0.35 0.16 0.07 0.03
Swing check 5.1 2.9 2.1 2.0 2.0 2.0 2.0 2.0 2.0
Angle 9.0 4.7 2.0 1.0 4.5 2.4 2.0 2.0 2.0

Elbows:
45° regular 0.39 0.32 0.30 0.29
45° long radius 0.21 0.20 0.19 0.16 0.14
90° regular 2.0 1.5 0.95 0.64 0.50 0.39 0.30 0.26 0.21
90° long radius 1.0 0.72 0.41 0.23 0.40 0.30 0.19 0.15 0.10
180° regular 2.0 1.5 0.95 0.64 0.41 0.35 0.30 0.25 0.20
180° long radius 0.40 0.30 0.21 0.15 0.10

Tees:
Line flow 0.90 0.90 0.90 0.90 0.24 0.19 0.14 0.10 0.07
Branch flow 2.4 1.8 1.4 1.1 1.0 0.80 0.64 0.58 0.41



Fig. 6.18a Recent measured loss
coefficients for 90° elbows. These
values are less than those reported
in Table 6.5. [From Ref. 48, cour-
tesy of R. D. Coffield.]

ting, and two tee connections. Fittings may be connected by either internal screws or
flanges, hence the two listings. We see that K generally decreases with pipe size, which
is consistent with the higher Reynolds number and decreased roughness ratio of large
pipes. We stress that Table 6.5 represents losses averaged among various manufactur-
ers, so there is an uncertainty as high as = 50 percent.

In addition, most of the data in Table 6.5 are relatively old [15, 16] and therefore
based upon fittings manufactured in the 1950s. Modern forged and molded fittings may
yield somewhat different loss factors, often less than listed in Table 6.5. An example,
shown in Fig. 6.18a, gives very recent data [48] for fairly short (bend-radius/elbow-
diameter ! 1.2) flanged 90° elbows. The elbow diameter was 1.69 in. Notice first that
K is plotted versus Reynolds number, rather than versus the raw (dimensional) pipe di-
ameters in Table 6.5, and therefore Fig. 6.18a has more generality. Then notice that
the K values of 0.23 = 0.05 are significantly less than the values for 90° elbows in
Table 6.5, indicating smoother walls and/or better design. One may conclude that
(1) Table 6.5 data are probably conservative and (2) loss factors are highly dependent
upon actual design and manufacturing factors, with Table 6.5 only serving as a rough
guide.

The valve losses in Table 6.5 are for the fully open condition. Losses can be much
higher for a partially open valve. Figure 6.18b gives average losses for three valves as
a function of “percentage open,” as defined by the opening-distance ratio h/D (see Fig.
6.17 for the geometries). Again we should warn of a possible uncertainty of = 50 per-
cent. Of all minor losses, valves, because of their complex geometry, are most sensi-
tive to manufacturers’ design details. For more accuracy, the particular design and man-
ufacturer should be consulted [35].
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Fig. 6.18b Average-loss coefficients
for partially open valves (see
sketches in Fig. 6.17).

The butterfly valve of Fig. 6.19a is a stem-mounted disk which, when closed, seats
against an O-ring or compliant seal near the pipe surface. A single 90° turn opens the
valve completely, hence the design is ideal for controllable quick-opening and quick-
closing situations such as occur in fire protection and the electric power industry. How-
ever, considerable dynamic torque is needed to close these valves, and losses are high
when the valves are nearly closed.

Figure 6.19b shows butterfly-valve loss coefficients as a function of the opening an-
gle : for turbulent-flow conditions (: ! 0 is closed). The losses are huge when the
opening is small, and K drops off nearly exponentially with the opening angle. There
is a factor of 2 spread among the various manufacturers. Note that K in Fig. 6.19b is,
as usual, based on the average pipe velocity V ! Q/A, not on the increased velocity of
the flow as it passes through the narrow valve passage.
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Fig. 6.20 Resistance coefficients
for 90° bends.

A bend or curve in a pipe, as in Fig. 6.20, always induces a loss larger than the sim-
ple Moody friction loss, due to flow separation at the walls and a swirling secondary
flow arising from the centripetal acceleration. The loss coefficients K in Fig. 6.20 are
for this additional bend loss. The Moody loss due to the axial length of the bend must
be computed separately; i.e., the bend length should be added to the pipe length.

As shown in Fig. 6.21, entrance losses are highly dependent upon entrance geom-
etry, but exit losses are not. Sharp edges or protrusions in the entrance cause large zones
of flow separation and large losses. A little rounding goes a long way, and a well-
rounded entrance (r ! 0.2d) has a nearly negligible loss K ! 0.05. At a submerged exit,
on the other hand, the flow simply passes out of the pipe into the large downstream
reservoir and loses all its velocity head due to viscous dissipation. Therefore K ! 1.0
for all submerged exits, no matter how well rounded.

If the entrance is from a finite reservoir, it is termed a sudden contraction (SC) be-
tween two sizes of pipe. If the exit is to finite-sized pipe, it is termed a sudden ex-
pansion (SE). The losses for both are graphed in Fig. 6.22. For the sudden expansion,
the shear stress in the corner separated flow, or deadwater region, is negligible, so that
a control-volume analysis between the expansion section and the end of the separation
zone gives a theoretical loss

KSE ! #1 - %
D
d2

2%$
2

! %
V2

h
/(

m

2g)
% (6.101)

Note that K is based on the velocity head in the small pipe. Equation (6.101) is in ex-
cellent agreement with experiment.

For the sudden contraction, however, flow separation in the downstream pipe causes
the main stream to contract through a minimum diameter dmin, called the vena con-
tracta, as sketched in Fig. 6.22. Because the theory of the vena contracta is not well
developed, the loss coefficient in the figure for sudden contraction is experimental. It
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Fig. 6.21 Entrance and exit loss co-
efficients: (a) reentrant inlets;
(b) rounded and beveled inlets. Exit
losses are K ! 1.0 for all shapes of
exit (reentrant, sharp, beveled, or
rounded). (From Ref. 37.)
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Fig. 6.23 Flow losses in a gradual
conical expansion region.

fits the empirical formula

KSC ! 0.42#1 - %
D
d2

2%$ (6.102)

up to the value d/D ! 0.76, above which it merges into the sudden-expansion predic-
tion, Eq. (6.101).

If the expansion or contraction is gradual, the losses are quite different. Figure 6.23
shows the loss through a gradual conical expansion, usually called a diffuser [14]. There
is a spread in the data, depending upon the boundary-layer conditions in the upstream
pipe. A thinner entrance boundary layer, like the entrance profile in Fig. 6.6, gives a
smaller loss. Since a diffuser is intendsed to raise the static pressure of the flow, dif-
fuser data list the pressure-recovery coefficient of the flow

Cp ! (6.103)

The loss coefficient is related to this parameter by

K ! %
V2

h
/(

m

2g)
% ! 1 - - Cp (6.104)

For a given area ratio, the higher the pressure recovery, the lower the loss; hence large
Cp means a successful diffuser. From Fig. 6.23 the minimum loss (maximum recov-
ery) occurs for a cone angle 2: equal to about 5°. Angles smaller than this give a large
Moody-type loss because of their excessive length. For cone angles greater than 40 to
60°, the loss is so excessive that it would actually be better to use a sudden expansion.

d1
4

%
d2

4

p2 - p1%
%12%#V1

2
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E6.16

This unexpected effect is due to gross flow separation in a wide-angle diffuser, as we
shall see soon when we study boundary layers. Reference 14 has extensive data on dif-
fusers.

For a gradual contraction, the loss is very small, as seen from the following exper-
imental values [15]:

Contraction cone angle 2:, deg 30 45 60

K for gradual contraction 0.02 0.04 0.07

References 15, 16, 43, and 46 contain additional data on minor losses.

EXAMPLE 6.16

Water, # ! 1.94 slugs/ft3 and ' ! 0.000011 ft2/s, is pumped between two reservoirs at 0.2 ft3/s
through 400 ft of 2-in-diameter pipe and several minor losses, as shown in Fig. E6.16. The rough-
ness ratio is 9/d ! 0.001. Compute the pump horsepower required.
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Sharp
entrance

Open globe
valve

Pump

400 ft of pipe, d =        ft

12-in
bend radius

Half-open
gate valve

Sharp
exit

Screwed
regular

90° elbow

z2 = 120 ft

z1 = 20 ft

2

1

2
12

Solution

Write the steady-flow energy equation between sections 1 and 2, the two reservoir surfaces:

%
#
p
g
1% + %

V
2g

1
2

% + z1 ! #%
#
p
g
2% + %

V
2g

2
2

% + z2$ + hf + *hm - hp

where hp is the head increase across the pump. But since p1 ! p2 and V1 ! V2 ! 0, solve for the
pump head

hp ! z2 - z1 + hf + * hm ! 120 ft - 20 ft + %
2
V
g

2

%#%
f
d
L
% + *K$ (1)

Now with the flow rate known, calculate

V ! %
Q
A

% ! ! 9.17 ft/s

Now list and sum the minor loss coefficients:

0.2 ft3/s
%%

%14%.(%1
2
2% ft)2



6.8 Multiple-Pipe Systems8

Loss K

Sharp entrance (Fig. 6.21) 0.5
Open globe valve (2 in, Table 6.5) 6.9
12-in bend (Fig. 6.20) 0.15
Regular 90° elbow (Table 6.5) 0.95
Half-closed gate valve (from Fig. 6.18b) 2.7
Sharp exit (Fig. 6.21) 1.0

? K ! 12.2

Calculate the Reynolds number and pipe-friction factor

Red ! %
V
'
d
% ! ! 139,000

For 9/d ! 0.001, from the Moody chart read f ! 0.0216. Substitute into Eq. (1)

hp ! 100 ft + %
2
(
(
9
3
.1
2
7
.2

f
f
t
t
/
/
s
s
)
2

2

)
% & + 12.2'

! 100 ft + 84 ft ! 184 ft pump head

The pump must provide a power to the water of

P ! #gQhp ! [1.94(32.2) lbf/ft3](0.2 ft3/s)(184 ft) ! 2300 ft & lbf/s

The conversion factor is 1 hp ! 550 ft & lbf/s. Therefore

P ! %
2
5
3
5
0
0
0

% ! 4.2 hp Ans.

Allowing for an efficiency of 70 to 80 percent, a pump is needed with an input of about 6 hp.

If you can solve the equations for one-pipe systems, you can solve them all; but when
systems contain two or more pipes, certain basic rules make the calculations very
smooth. Any resemblance between these rules and the rules for handling electric cir-
cuits is not coincidental.

Figure 6.24 shows three examples of multiple-pipe systems. The first is a set of three
(or more) pipes in series. Rule 1 is that the flow rate is the same in all pipes

Q1 ! Q2 ! Q3 ! const

or V1d 1
2 ! V2d 2

2 ! V3d3
2 (6.105)

Rule 2 is that the total head loss through the system equals the sum of the head loss
in each pipe

*hA→B ! *h1 + *h2 + *h3 (6.106)

In terms of the friction and minor losses in each pipe, we could rewrite this as

0.0216(400)
%%

%1
2
2%

9.17(%1
2
2%)

%
0.000011
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Fig. 6.24 Examples of multiple-
pipe systems: (a) pipes in series;
(b) pipes in parallel; (c) the three-
reservoir junction problem.

*hA→B ! %
V
2g

1
2

% #%
f1
d
L

1

1% + *K1$ + %
V
2g

2
2

% #%
f2
d
L

2

2% + *K2$
+ %

V
2g

3
2

% #%
f3
d
L

3

3% + *K3$ (6.107)

and so on for any number of pipes in the series. Since V2 and V3 are proportional to
V1 from Eq. (6.105), Eq. (6.107) is of the form

*hA→B ! %
V
2g

1
2

% (80 + 81 f1 + 82 f2 + 83 f3) (6.108)

where the 8i are dimensionless constants. If the flow rate is given, we can evaluate the
right-hand side and hence the total head loss. If the head loss is given, a little iteration
is needed, since f1, f2, and f3 all depend upon V1 through the Reynolds number. Begin
by calculating f1, f2, and f3, assuming fully rough flow, and the solution for V1 will
converge with one or two iterations. EES is ideal for this purpose.

EXAMPLE 6.17

Given is a three-pipe series system, as in Fig. 6.24a. The total pressure drop is pA - pB ! 150,000
Pa, and the elevation drop is zA - zB ! 5 m. The pipe data are
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Pipe L, m d, cm 9, mm 9/d

1 100 8 0.24 0.003
2 150 6 0.12 0.002
3 80 4 0.20 0.005

The fluid is water, # ! 1000 kg/m3 and ' ! 1.02 " 10-6 m2/s. Calculate the flow rate Q in m3/h
through the system.

Solution

The total head loss across the system is

*hA→B ! %
pA

#
-
g

pB% + zA - zB ! %
10

1
0
5
0
0
(
,0
9
0
.8
0
1)

% + 5 m ! 20.3 m

From the continuity relation (6.105) the velocities are

V2 ! %
d
d

1

2
2

2

% V1 ! %
1
9
6
%V1 V3 ! %

d
d

1

3
2

2

% V1 ! 4V1

and Re2 ! %
V
V

2

1

d
d

2

1
% Re1 ! %

4
3

%Re1 Re3 ! 2 Re1

Neglecting minor losses and substituting into Eq. (6.107), we obtain

*hA→B ! %
V
2g

1
2

% &1250 f1 + 2500#%
1
9
6
%$

2 
f2 + 2000(4)2 f3'

or 20.3 m ! %
V
2g

1
2

% (1250 f1 + 7900 f2 + 32,000 f3) (1)

This is the form which was hinted at in Eq. (6.108). It seems to be dominated by the third pipe
loss 32,000f3. Begin by estimating f1, f2, and f3 from the Moody-chart fully rough regime

f1 ! 0.0262 f2 ! 0.0234 f3 ! 0.0304

Substitute in Eq. (1) to find V 1
2 ! 2g(20.3)/(33 + 185 + 973). The first estimate thus is V1 !

0.58 m/s, from which

Re1 ! 45,400 Re2 ! 60,500 Re3 ! 90,800

Hence, from the Moody chart,

f1 ! 0.0288 f2 ! 0.0260 f3 ! 0.0314

Substitution into Eq. (1) gives the better estimate

V1 ! 0.565 m/s Q ! %14%.d1
2V1 ! 2.84 " 10-3 m3/s

or Q1 ! 10.2 m3/h Ans.

A second iteration gives Q ! 10.22 m3/h, a negligible change.

The second multiple-pipe system is the parallel-flow case shown in Fig. 6.24b. Here
the loss is the same in each pipe, and the total flow is the sum of the individual flows
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*hA→B ! *h1 ! *h2 ! *h3 (6.109a)

Q ! Q1 + Q2 + Q3 (6.109b)

If the total head loss is known, it is straightforward to solve for Qi in each pipe and
sum them, as will be seen in Example 6.18. The reverse problem, of determining ?Qi

when hf is known, requires iteration. Each pipe is related to hf by the Moody relation
hf ! f(L/d)(V2/2g) ! fQ2/C, where C ! .2gd5/8L. Thus each pipe has nearly quadratic
nonlinear parallel resistance, and head loss is related to total flow rate by

hf ! where Ci ! %
.2

8
g
L
d

i

i
5

% (6.109c)

Since the fi vary with Reynolds number and roughness ratio, one begins Eq. (6.109c)
by guessing values of fi (fully rough values are recommended) and calculating a first
estimate of hf. Then each pipe yields a flow-rate estimate Qi ! (Cihf /fi)

1/2 and hence
a new Reynolds number and a better estimate of fi. Then repeat Eq. (6.109c) to con-
vergence.

It should be noted that both of these parallel-pipe cases—finding either ?Q or hf —
are easily solved by EES if reasonable initial guesses are given.

EXAMPLE 6.18

Assume that the same three pipes in Example 6.17 are now in parallel with the same total head
loss of 20.3 m. Compute the total flow rate Q, neglecting minor losses.

Solution

From Eq. (6.109a) we can solve for each V separately

20.3 m ! %
V
2g

1
2

% 1250f1 ! %
V
2g

2
2

% 2500f2 ! %
V
2g

3
2

% 2000f3 (1)

Guess fully rough flow in pipe 1: f1 ! 0.0262, V1 ! 3.49 m/s; hence Re1 ! V1d1/' ! 273,000.
From the Moody chart read f1 ! 0.0267; recompute V1 ! 3.46 m/s, Q1 ! 62.5 m3/h. [This prob-
lem can also be solved from Eq. (6.66).]

Next guess for pipe 2: f2 ! 0.0234, V2 ! 2.61 m/s; then Re2 ! 153,000, and hence f2 !
0.0246, V2 ! 2.55 m/s, Q2 ! 25.9 m3/h.

Finally guess for pipe 3: f3 ! 0.0304, V3 ! 2.56 m/s; then Re3 ! 100,000, and hence f3 !
0.0313, V3 ! 2.52 m/s, Q3 ! 11.4 m3/h.

This is satisfactory convergence. The total flow rate is

Q ! Q1 + Q2 + Q3 ! 62.5 + 25.9 + 11.4 ! 99.8 m3/h Ans.

These three pipes carry 10 times more flow in parallel than they do in series.
This example is ideal for EES. One enters the pipe data (Li,di,9i); the fluid properties

(#, $); the definitions Qi ! (./4)di
2Vi, Rei ! #Vidi/$, and hf ! fi(Li/di)(V i

2/2g);
plus the Colebrook formula (6.74) for each friction factor fi. There is no need to use resistance
ideas such as Eq. (6.109c). Specify that fi < 0 and Rei < 4000. Then, if one enters Q ! ∑Qi !
(99.8/3600) m3/s, EES quickly solves for hf ! 20.3 m. Conversely, if one enters hf !
20.3 m , EES solves for Q ! 99.8 m3/h.

Q2

%%

#*)C%i/f%i%$
2
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Consider the third example of a three-reservoir pipe junction, as in Fig. 6.24c. If all
flows are considered positive toward the junction, then

Q1 + Q2 + Q3 ! 0 (6.110)

which obviously implies that one or two of the flows must be away from the junction.
The pressure must change through each pipe so as to give the same static pressure pJ

at the junction. In other words, let the HGL at the junction have the elevation

hJ ! zJ + %
#
p
g
J%

where pJ is in gage pressure for simplicity. Then the head loss through each, assum-
ing p1 ! p2 ! p3 ! 0 (gage) at each reservoir surface, must be such that

*h1 ! %
V
2g

1
2

% %
f1
d
L

1

1% ! z1 - hJ

*h2 ! %
V
2g

2
2

% %
f2
d
L

2

2% ! z2 - hJ (6.111)

*h3 ! %
V
2g

3
2

% %
f3
d
L

3

3% ! z3 - hJ

We guess the position hJ and solve Eqs. (6.111) for V1, V2, and V3 and hence Q1, Q2,
and Q3, iterating until the flow rates balance at the junction according to Eq. (6.110).
If we guess hJ too high, the sum Q1 + Q2 + Q3 will be negative and the remedy is to
reduce hJ, and vice versa.

EXAMPLE 6.19

Take the same three pipes as in Example 6.17, and assume that they connect three reservoirs at
these surface elevations

z1 ! 20 m z2 ! 100 m z3 ! 40 m

Find the resulting flow rates in each pipe, neglecting minor losses.

Solution

As a first guess, take hJ equal to the middle reservoir height, z3 ! hJ ! 40 m. This saves one
calculation (Q3 ! 0) and enables us to get the lay of the land:

Reservoir hJ, m zi - hJ, m fi Vi, m/s Qi, m3/h Li /di

1 40 -20 0.0267 -3.43 -62.1 1250
2 40 60 0.0241 4.42 45.0 2500
3 40 0 0 0 2000

*Q ! -17.1

Since the sum of the flow rates toward the junction is negative, we guessed hJ too high. Reduce
hJ to 30 m and repeat:
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Fig. 6.25 Schematic of a piping
network.

Reservoir hJ, m zi - hJ, m fi Vi, m/s Qi, m3/h

1 30 -10 0.0269 -2.42 -43.7
2 30 -70 0.0241 -4.78 -48.6
3 30 -10 0.0317 -1.76 -08.0

*Q ! 12.9

This is positive ?Q, and so we can linearly interpolate to get an accurate guess: hJ ! 34.3 m.
Make one final list:

Reservoir hJ, m zi - hJ, m fi Vi, m/s Qi, m3/h

1 34.3 -14.3 0.0268 -2.90 -52.4
2 34.3 -65.7 0.0241 -4.63 -47.1
3 34.3 -05.7 0.0321 -1.32 -06.0

*Q ! 0.7

This is close enough; hence we calculate that the flow rate is 52.4 m3/h toward reservoir 3, bal-
anced by 47.1 m3/h away from reservoir 1 and 6.0 m3/h away from reservoir 3.

One further iteration with this problem would give hJ ! 34.53 m, resulting in Q1 ! -52.8,
Q2 ! 47.0, and Q3 ! 5.8 m3/h, so that ?Q ! 0 to three-place accuracy. Pedagogically speaking,
we would then be exhausted.

The ultimate case of a multipipe system is the piping network illustrated in Fig. 6.25.
This might represent a water supply system for an apartment or subdivision or even a
city. This network is quite complex algebraically but follows the same basic rules:
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6.9 Experimental Duct Flows:
Diffuser Performance

1. The net flow into any junction must be zero.
2. The net head loss around any closed loop must be zero. In other words, the HGL

at each junction must have one and only one elevation.
3. All head losses must satisfy the Moody and minor-loss friction correlations.

By supplying these rules to each junction and independent loop in the network, one
obtains a set of simultaneous equations for the flow rates in each pipe leg and the HGL
(or pressure) at each junction. Solution may then be obtained by numerical iteration,
as first developed in a hand-calculation technique by Prof. Hardy Cross in 1936 [17].
Computer solution of pipe-network problems is now quite common and covered in at
least one specialized text [18]. Solution on microcomputers is also a reality. Some ex-
plicit numerical algorithms have been developed by Ormsbee and Wood [19]. Network
analysis is quite useful for real water distribution systems if well calibrated with the
actual system head-loss data.

The Moody chart is such a great correlation for tubes of any cross section with any
roughness or flow rate that we may be deluded into thinking that the world of 
internal-flow prediction is at our feet. Not so. The theory is reliable only for ducts of
constant cross section. As soon as the section varies, we must rely principally upon ex-
periment to determine the flow properties. As mentioned many times before, experi-
ment is a vital part of fluid mechanics.

Literally thousands of papers in the literature report experimental data for specific
internal and external viscous flows. We have already seen several examples:

1. Vortex shedding from a cylinder (Fig. 5.2)
2. Drag of a sphere and a cylinder (Fig. 5.3)
3. Hydraulic model of an estuary (Fig. 5.9)
4. Rough-wall pipe flows (Fig. 6.12)
5. Secondary flow in ducts (Fig. 6.16)
6. Minor-duct-loss coefficients (Sec. 6.7)

Chapter 7 will treat a great many more external-flow experiments, especially in Sec.
7.5. Here we shall show data for one type of internal flow, the diffuser.

A diffuser, shown in Fig. 6.26a and b, is an expansion or area increase intended to re-
duce velocity in order to recover the pressure head of the flow. Rouse and Ince [6] re-
late that it may have been invented by customers of the early Roman (about 100 A.D.)
water supply system, where water flowed continuously and was billed according to
pipe size. The ingenious customers discovered that they could increase the flow rate at
no extra cost by flaring the outlet section of the pipe.

Engineers have always designed diffusers to increase pressure and reduce kinetic
energy of ducted flows, but until about 1950, diffuser design was a combination of art,
luck, and vast amounts of empiricism. Small changes in design parameters caused large
changes in performance. The Bernoulli equation seemed highly suspect as a useful tool.

Neglecting losses and gravity effects, the incompressible Bernoulli equation pre-
dicts that
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Fig. 6.26 Diffuser geometry and
typical flow regimes: (a) geometry
of a flat-walled diffuser; (b) geom-
etry of a conical diffuser; (c) flat-
diffuser stability map. (From Ref.
14, by permission of Creare, Inc.)

p + %12%#V2 ! p0 ! const (6.112)

where p0 is the stagnation pressure which the fluid would achieve if the fluid were
slowed to rest (V ! 0) without losses.

The basic output of a diffuser is the pressure-recovery coefficient Cp, defined as

Cp ! %
p
p

0

e

t

-
-

p
p
t

t
% (6.113)

where subscripts e and t mean the exit and the throat (or inlet), respectively. Higher Cp

means better performance.
Consider the flat-walled diffuser in Fig. 6.26a, where section 1 is the inlet and sec-

tion 2 the exit. Application of Bernoulli’s equation (6.112) to this diffuser predicts that

p01 ! p1 + %12%#V1
2 ! p2 + %12%#V2

2 ! p02

or Cp,frictionless ! 1 - #%
V
V

2

1
%$

2
(6.114)

Meanwhile, steady one-dimensional continuity would require that

Q ! V1A1 ! V2A2 (6.115)

Combining (6.114) and (6.115), we can write the performance in terms of the area ra-
tio AR ! A2/A1, which is a basic parameter in diffuser design:

Cp,frictionless ! 1 - (AR)-2 (6.116)

A typical design would have AR ! 5"1, for which Eq. (6.116) predicts Cp ! 0.96, or
nearly full recovery. But, in fact, measured values of Cp for this area ratio [14] are only
as high as 0.86 and can be as low as 0.24.
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Fig. 6.27 Diffuser performance:
(a) ideal pattern with good perfor-
mance; (b) actual measured pattern
with boundary-layer separation and
resultant poor performance.

The basic reason for the discrepancy is flow separation, as sketched in Fig. 6.27.
The increasing pressure in the diffuser is an unfavorable gradient (Sec. 7.4), which
causes the viscous boundary layers to break away from the walls and greatly reduces
the performance. Theories can now predict this behavior (see, e.g., Ref. 20).

As an added complication to boundary-layer separation, the flow patterns in a dif-
fuser are highly variable and were considered mysterious and erratic until 1955, when
Kline revealed the structure of these patterns with flow-visualization techniques in a
simple water channel.

A complete stability map of diffuser flow patterns was published in 1962 by Fox
and Kline [21], as shown in Fig. 6.26c. There are four basic regions. Below line aa
there is steady viscous flow, no separation, and moderately good performance. Note
that even a very short diffuser will separate, or stall, if its half-angle is greater than
10°.

Between lines aa and bb is a transitory stall pattern with strongly unsteady flow.
Best performance, i.e., highest Cp, occurs in this region. The third pattern, between bb
and cc, is steady bistable stall from one wall only. The stall pattern may flip-flop from
one wall to the other, and performance is poor.
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The fourth pattern, above line cc, is jet flow, where the wall separation is so gross
and pervasive that the mainstream ignores the walls and simply passes on through at
nearly constant area. Performance is extremely poor in this region.

Dimensional analysis of a flat-walled or conical diffuser shows that Cp should de-
pend upon the following parameters:

1. Any two of the following geometric parameters:
a. Area ratio AR ! A2/A1 or (De/D)2

b. Divergence angle 2:
c. Slenderness L/W1 or L/D

2. Inlet Reynolds number Ret ! V1W1/' or Ret ! V1D/'
3. Inlet Mach number Mat ! V1/a1

4. Inlet boundary-layer blockage factor Bt ! ABL/A1, where ABL is the wall area
blocked, or displaced, by the retarded boundary-layer flow in the inlet (typically
Bt varies from 0.03 to 0.12)

A flat-walled diffuser would require an additional shape parameter to describe its
cross section:

5. Aspect ratio AS ! b/W1

Even with this formidable list, we have omitted five possible important effects: inlet
turbulence, inlet swirl, inlet profile vorticity, superimposed pulsations, and downstream
obstruction, all of which occur in practical machinery applications.

The three most important parameters are AR, :, and B. Typical performance maps
for diffusers are shown in Fig. 6.28. For this case of 8 to 9 percent blockage, both the
flat-walled and conical types give about the same maximum performance, Cp ! 0.70,
but at different divergence angles (9° flat versus 4.5° conical). Both types fall far short
of the Bernoulli estimates of Cp ! 0.93 (flat) and 0.99 (conical), primarily because of
the blockage effect.

From the data of Ref. 14 we can determine that, in general, performance decreases
with blockage and is approximately the same for both flat-walled and conical diffusers,
as shown in Table 6.6. In all cases, the best conical diffuser is 10 to 80 percent longer
than the best flat-walled design. Therefore, if length is limited in the design, the flat-
walled design will give the better performance.

The experimental design of a diffuser is an excellent example of a successful at-
tempt to minimize the undesirable effects of adverse pressure gradient and flow sepa-
ration.
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Table 6.6 Maximum Diffuser-
Performance Data [14] Flat-walled Conical

Inlet blockage —————————— ———————————
Bt Cp,max L/W1 Cp,max L/d

0.02 0.86 18 0.83 20
0.04 0.80 18 0.78 22
0.06 0.75 19 0.74 24
0.08 0.70 20 0.71 26
0.10 0.66 18 0.68 28
0.12 0.63 16 0.65 30



Fig. 6.28a Typical performance
maps for flat-wall and conical dif-
fusers at similar operating condi-
tions: (a) flat wall. (From Ref. 14,
by permission of Creare, Inc.)

Almost all practical fluids engineering problems are associated with the need for an
accurate flow measurement. There is a need to measure local properties (velocity, pres-
sure, temperature, density, viscosity, turbulent intensity), integrated properties (mass
flow and volume flow), and global properties (visualization of the entire flow field).
We shall concentrate in this section on velocity and volume-flow measurements.

We have discussed pressure measurement in Sec. 2.10. Measurement of other ther-
modynamic properties, such as density, temperature, and viscosity, is beyond the scope
of this text and is treated in specialized books such as Refs. 22 and 23. Global visual-
ization techniques were discussed in Sec. 1.7 for low-speed flows, and the special op-
tical techniques used in high-speed flows are treated in Ref. 21 of Chap. 1. Flow-mea-
surement schemes suitable for open-channel and other free-surface flows are treated in
Chap. 10.

Velocity averaged over a small region, or point, can be measured by several different
physical principles, listed in order of increasing complexity and sophistication:
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Fig. 6.28b Typical performance
maps for flat-wall and conical dif-
fusers at similar operating condi-
tions: (b) conical wall. (From Ref.
14, by permission of Creare, Inc.)

1. Trajectory of floats or neutrally buoyant particles
2. Rotating mechanical devices

a. Cup anemometer
b. Savonius rotor
c. Propeller meter
d. Turbine meter

3. Pitot-static tube (Fig. 6.30)
4. Electromagnetic current meter
5. Hot wires and hot films
6. Laser-doppler anemometer (LDA)

Some of these meters are sketched in Fig. 6.29.

Floats or buoyant particles. A simple but effective estimate of flow velocity can be
found from visible particles entrained in the flow. Examples include flakes on the sur-
face of a channel flow, small neutrally buoyant spheres mixed with a liquid, or hydro-
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Fig. 6.29 Eight common velocity
meters: (a) three-cup anemometer;
(b) Savonius rotor; (c) turbine
mounted in a duct; (d) free-pro-
peller meter; (e) hot-wire
anemometer; (f) hot-film anemome-
ter; (g) pitot-static tube; (h) laser-
doppler anemometer.

gen bubbles. Sometimes gas flows can be estimated from the motion of entrained dust
particles. One must establish whether the particle motion truly simulates the fluid mo-
tion. Floats are commonly used to track the movement of ocean waters and can be de-
signed to move at the surface, along the bottom, or at any given depth [24]. Many of-
ficial tidal-current charts [25] were obtained by releasing and timing a floating spar
attached to a length of string. One can release whole groups of spars to determine a
flow pattern.

Rotating sensors. The rotating devices of Fig. 6.29a to d can be used in either gases
or liquids, and their rotation rate is approximately proportional to the flow velocity.
The cup anemometer (Fig. 6.29a) and Savonius rotor (Fig. 6.29b) always rotate the
same way, regardless of flow direction. They are popular in atmospheric and oceano-
graphic applications and can be fitted with a direction vane to align themselves with
the flow. The ducted-propeller (Fig. 6.29c) and free-propeller (Fig. 6.29d) meters must
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Fig. 6.30 Pitot-static tube for com-
bined measurement of static and
stagnation pressure in a moving
stream.

be aligned with the flow parallel to their axis of rotation. They can sense reverse flow
because they will then rotate in the opposite direction. All these rotating sensors can
be attached to counters or sensed by electromagnetic or slip-ring devices for either a
continuous or a digital reading of flow velocity. All have the disadvantage of being rel-
atively large and thus not representing a “point.”

Pitot-static tube. A slender tube aligned with the flow (Figs. 6.29g and 6.30) can mea-
sure local velocity by means of a pressure difference. It has sidewall holes to measure
the static pressure ps in the moving stream and a hole in the front to measure the stag-
nation pressure p0, where the stream is decelerated to zero velocity. Instead of mea-
suring p0 or ps separately, it is customary to measure their difference with, say, a trans-
ducer, as in Fig. 6.30.

If ReD < 1000, where D is the probe diameter, the flow around the probe is nearly
frictionless and Bernoulli’s relation, Eq. (3.77), applies with good accuracy. For in-
compressible flow

ps + %12%#V2 + #gzs ! p0 + %12%#(0)2 + #gz0

Assuming that the elevation pressure difference #g(zs - z0) is negligible, this reduces
to

V ! &2%
(p0 -

#
ps)%'

1/2
(6.117)

This is the Pitot formula, named after the French engineer who designed the device in
1732.

The primary disadvantage of the pitot tube is that it must be aligned with the flow
direction, which may be unknown. For yaw angles greater than 5°, there are substan-
tial errors in both the p0 and ps measurements, as shown in Fig. 6.30. The pitot-static
tube is useful in liquids and gases; for gases a compressibility correction is necessary
if the stream Mach number is high (Chap. 9). Because of the slow response of the fluid-
filled tubes leading to the pressure sensors, it is not useful for unsteady-flow mea-
surements. It does resemble a point and can be made small enough to measure, e.g.,
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blood flow in arteries and veins. It is not suitable for low-velocity measurement in
gases because of the small pressure differences developed. For example, if V ! 1 ft/s
in standard air, from Eq. (6.117) we compute p0 - p equal to only 0.001 lbf/ft2 (0.048
Pa). This is beyond the resolution of most pressure gages.

Electromagnetic meter. If a magnetic field is applied across a conducting fluid, the
fluid motion will induce a voltage across two electrodes placed in or near the flow. The
electrodes can be streamlined or built into the wall, and they cause little or no flow re-
sistance. The output is very strong for highly conducting fluids such as liquid metals.
Seawater also gives good output, and electromagnetic current meters are in common
use in oceanography. Even low-conductivity fresh water can be measured by amplify-
ing the output and insulating the electrodes. Commercial instruments are available for
most liquid flows but are relatively costly. Electromagnetic flowmeters are treated in
Ref. 26.

Hot-wire anemometer. A very fine wire (d ! 0.01 mm or less) heated between two
small probes, as in Fig. 6.29e, is ideally suited to measure rapidly fluctuating flows
such as the turbulent boundary layer. The idea dates back to work by L. V. King in
1914 on heat loss from long thin cylinders. If electric power is supplied to heat the
cylinder, the loss varies with flow velocity across the cylinder according to King’s law

q ! I2R ! a + b(#V)n (6.118)

where n ! %13% at very low Reynolds numbers and equals %12% at high Reynolds numbers.
The hot wire normally operates in the high-Reynolds-number range but should be cal-
ibrated in each situation to find the best-fit a, b, and n. The wire can be operated ei-
ther at constant current I, so that resistance R is a measure of V, or at constant resis-
tance R (constant temperature), with I a measure of velocity. In either case, the output
is a nonlinear function of V, and the equipment should contain a linearizer to produce
convenient velocity data. Many varieties of commercial hot-wire equipment are avail-
able, as are do-it-yourself designs [27]. Excellent detailed discussions of the hot wire
are given in Refs. 1 and 28.

Because of its frailty, the hot wire is not suited to liquid flows, whose high density
and entrained sediment will knock the wire right off. A more stable yet quite sensitive
alternative for liquid-flow measurement is the hot-film anemometer (Fig. 6.29f). A thin
metallic film, usually platinum, is plated onto a relatively thick support which can be
a wedge, a cone, or a cylinder. The operation is similar to the hot wire. The cone gives
best response but is liable to error when the flow is yawed to its axis.

Hot wires can easily be arranged in groups to measure two- and three-dimensional
velocity components.

Laser-doppler anemometer. In the LDA a laser beam provides highly focused, coher-
ent monochromatic light which is passed through the flow. When this light is scattered
from a moving particle in the flow, a stationary observer can detect a change, or doppler
shift, in the frequency of the scattered light. The shift *f is proportional to the veloc-
ity of the particle. There is essentially zero disturbance of the flow by the laser.

Figure 6.29h shows the popular dual-beam mode of the LDA. A focusing device
splits the laser into two beams, which cross the flow at an angle :. Their intersection,
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which is the measuring volume or resolution of the measurement, resembles an ellip-
soid about 0.5 mm wide and 0.1 mm in diameter. Particles passing through this mea-
suring volume scatter the beams; they then pass through receiving optics to a pho-
todetector which converts the light to an electric signal. A signal processor then converts
electric frequency to a voltage which can be either displayed or stored. If @ is the wave-
length of the laser light, the measured velocity is given by

V ! %
2 si

@
n

*
(:
f
/2)

% (6.119)

Multiple components of velocity can be detected by using more than one photodetec-
tor and other operating modes. Either liquids or gases can be measured as long as scat-
tering particles are present. In liquids, normal impurities serve as scatterers, but gases
may have to be seeded. The particles may be as small as the wavelength of the light.
Although the measuring volume is not as small as with a hot wire, the LDA is capa-
ble of measuring turbulent fluctuations.

The advantages of the LDA are as follows:

1. No disturbance of the flow
2. High spatial resolution of the flow field
3. Velocity data that are independent of the fluid thermodynamic properties
4. An output voltage that is linear with velocity
5. No need for calibration

The disadvantages are that both the apparatus and the fluid must be transparent to light
and that the cost is high (a basic system shown in Fig. 6.29h begins at about $50,000).

Once installed, an LDA can map the entire flow field in minutest detail. To truly
appreciate the power of the LDA, one should examine, e.g., the amazingly detailed
three-dimensional flow profiles measured by Eckardt [29] in a high-speed centrifugal
compressor impeller. Extensive discussions of laser velocimetry are given in Refs. 38
and 39.

EXAMPLE 6.20

The pitot-static tube of Fig. 6.30 uses mercury as a manometer fluid. When it is placed in a wa-
ter flow, the manometer height reading is h ! 8.4 in. Neglecting yaw and other errors, what is
the flow velocity V in ft/s?

Solution

From the two-fluid manometer relation (2.33), with zA ! z2, the pressure difference is related to
h by

p0 - ps ! (AM - Aw)h

Taking the specific weights of mercury and water from Table 2.1, we have

p0 - ps ! (846 - 62.4 lbf/ft3) %
8
1
.
2
4
% ft ! 549 lbf/ft2

The density of water is 62.4/32.2 ! 1.94 slugs/ft3. Introducing these values into the pitot-static
formula (6.117), we obtain
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Volume-Flow Measurements

V ! &%12.
(
9
5
4
49

sl
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2

t3
)

%'
1/2

! 23.8 ft/s Ans.

Since this is a low-speed flow, no compressibility correction is needed.

It is often desirable to measure the integrated mass, or volume flow, passing through
a duct. Accurate measurement of flow is vital in billing customers for a given amount
of liquid or gas passing through a duct. The different devices available to make these
measurements are discussed in great detail in the ASME text on fluid meters [30]. These
devices split into two classes: mechanical instruments and head-loss instruments.

The mechanical instruments measure actual mass or volume of fluid by trapping it
and counting it. The various types of measurement are

1. Mass measurement
a. Weighing tanks
b. Tilting traps

2. Volume measurement
a. Volume tanks
b. Reciprocating pistons
c. Rotating slotted rings
d. Nutating disk
e. Sliding vanes
f. Gear or lobed impellers
g. Reciprocating bellows
h. Sealed-drum compartments

The last three of these are suitable for gas flow measurement.
The head-loss devices obstruct the flow and cause a pressure drop which is a mea-

sure of flux:

1. Bernoulli-type devices
a. Thin-plate orifice
b. Flow nozzle
c. Venturi tube

2. Friction-loss devices
a. Capillary tube
b. Porous plug

The friction-loss meters cause a large nonrecoverable head loss and obstruct the flow
too much to be generally useful.

Six other widely used meters operate on different physical principles:

1. Turbine meter
2. Vortex meter
3. Ultrasonic flowmeter
4. Rotameter
5. Coriolis mass flowmeter
6. Laminar flow element
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Fig. 6.31 The turbine meter widely
used in the oil, gas, and water sup-
ply industries: (a) basic design;
(b) typical calibration curve for a
range of crude oils. (Daniel Indus-
tries, Inc., Flow Products Division.)

Turbine meter. The turbine meter, sometimes called a propeller meter, is a freely ro-
tating propeller which can be installed in a pipeline. A typical design is shown in Fig.
6.31a. There are flow straighteners upstream of the rotor, and the rotation is measured
by electric or magnetic pickup of pulses caused by passage of a point on the rotor. The
rotor rotation is approximately proportional to the volume flow in the pipe.

A major advantage of the turbine meter is that each pulse corresponds to a finite 
incremental volume of fluid, and the pulses are digital and can be summed easily. 
Liquid-flow turbine meters have as few as two blades and produce a constant number
of pulses per unit fluid volume over a 5"1 flow-rate range with = 0.25 percent accu-
racy. Gas meters need many blades to produce sufficient torque and are accurate to =
1 percent.
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Fig. 6.32 A Commercial handheld
wind-velocity turbine meter. (Cour-
tesy of Nielsen-Kellerman Com-
pany.)

Since turbine meters are very individualistic, flow calibration is an absolute neces-
sity. A typical liquid-meter calibration curve is shown in Fig. 6.31b. Researchers at-
tempting to establish universal calibration curves have met with little practical success
as a result of manufacturing variabilities.

Turbine meters can also be used in unconfined flow situations, such as winds or
ocean currents. They can be compact, even microsize with two or three component di-
rections. Figure 6.32 illustrates a handheld wind velocity meter which uses a seven-
bladed turbine with a calibrated digital output. The accuracy of this device is quoted
at = 2 percent.

Vortex flowmeters. Recall from Fig. 5.2 that a bluff body placed in a uniform cross-
flow sheds alternating vortices at a nearly uniform Strouhal number St ! fL/U, where
U is the approach velocity and L is a characteristic body width. Since L and St are con-
stant, this means that the shedding frequency is proportional to velocity

f ! (const)(U) (6.120)

The vortex meter introduces a shedding element across a pipe flow and picks up the
shedding frequency downstream with a pressure, ultrasonic, or heat-transfer type of
sensor. A typical design is shown in Fig. 6.33.

The advantages of a vortex meter are as follows:

1. Absence of moving parts
2. Accuracy to = 1 percent over a wide flow-rate range (up to 100"1)
3. Ability to handle very hot or very cold fluids
4. Requirement of only a short pipe length
5. Calibration insensitive to fluid density or viscosity

For further details see Ref. 40.
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Fig. 6.34 Ultrasonic flowmeters: (a) pulse type; (b) doppler-shift type (from Ref. 41); (c) a
portable noninvasive installation (courtesy of Polysonics Inc., Houston, TX).
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Fig. 6.35 A commercial rotameter.
The float rises in the tapered tube
to an equilibrium position which is
a measure of the fluid-flow rate.
(Courtesy of Blue White Industries,
Westminster, CA.)

Ultrasonic flowmeters. The sound-wave analog of the laser velocimeter of Fig. 6.29h is
the ultrasonic flowmeter. Two examples are shown in Fig. 6.34. The pulse-type flowme-
ter is shown in Fig. 6.34a. Upstream piezoelectric transducer A is excited with a short
sonic pulse which propagates across the flow to downstream transducer B. The arrival
at B triggers another pulse to be created at A, resulting in a regular pulse frequency fA.
The same process is duplicated in the reverse direction from B to A, creating frequency
fB. The difference fA - fB is proportional to the flow rate. Figure 6.33b shows a doppler-
type arrangement, where sound waves from transmitter T are scattered by particles or
contaminants in the flow to receiver R. Comparison of the two signals reveals a doppler
frequency shift which is proportional to the flow rate. Ultrasonic meters are nonintru-
sive and can be directly attached to pipe flows in the field (Fig. 6.34c). Their quoted
uncertainty of = 1 to 2 percent can rise to = 5 percent or more due to irregularities in
velocity profile, fluid temperature, or Reynolds number. For further details see Ref. 41.

Rotameter. The variable-area transparent rotameter of Fig. 6.35 has a float which, un-
der the action of flow, rises in the vertical tapered tube and takes a certain equilibrium
position for any given flow rate. A student exercise for the forces on the float would
yield the approximate relation

Q ! CdAa#%Afl

2
o

W

at#
ne

fl

t

uid
%$

1/2
(6.121)

where Wnet is the float’s net weight in the fluid, Aa ! Atube - Afloat is the annular area
between the float and the tube, and Cd is a dimensionless discharge coefficient of or-
der unity, for the annular constricted flow. For slightly tapered tubes, Aa varies nearly
linearly with the float position, and the tube may be calibrated and marked with a flow-
rate scale, as in Fig. 6.35. The rotameter thus provides a readily visible measure of the
flow rate. Capacity may be changed by using different-sized floats. Obviously the tube
must be vertical, and the device does not give accurate readings for fluids containing
high concentrations of bubbles or particles.

Coriolis mass flowmeter. Most commercial meters measure volume flow, with mass
flow then computed by multiplying by the nominal fluid density. An attractive modern
alternative is a mass flowmeter which operates on the principle of the Coriolis accel-
eration associated with noninertial coordinates [recall Fig. 3.12 and the Coriolis term
2B " V in Eq. (3.48)]. The output of the meter is directly proportional to mass flow.

Figure 6.36 is a schematic of a Coriolis device, to be inserted into a piping system.
The flow enters a double-loop, double-tube arrangement which is electromagnetically vi-
brated at a high natural frequency (amplitude ( 1 mm and frequency < 100 Hz). The up
flow induces inward loop motion, while the down flow creates outward loop motion, both
due to the Coriolis effect. Sensors at both ends register a phase difference which is pro-
portional to mass flow. Quoted accuracy is approximately = 0.2 percent of full scale.

Laminar flow element. In many, perhaps most, commercial flowmeters, the flow
through the meter is turbulent and the variation of flow rate with pressure drop is non-
linear. In laminar duct flow, however, Q is linearly proportional to *p, as in Eq. (6.44):
Q ! [.R4/(8$L)] *p. Thus a laminar flow sensing element is attractive, since its cal-
ibration will be linear. To ensure laminar flow for what otherwise would be a turbu-
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Fig. 6.37 A complete flowmeter
system using a laminar-flow ele-
ment (in this case a narrow annu-
lus). The flow rate is linearly pro-
portional to the pressure drop.
(Courtesy of Martin Girard, DH 
Instruments, Inc.)

lent condition, all or part of the fluid is directed into small passages, each of which
has a low (laminar) Reynolds number. A honeycomb is a popular design.

Figure 6.37 uses axial flow through a narrow annulus to effect laminar flow. The
theory again predicts Q,*p, as in Eq. (6.92). However, the flow is very sensitive to
passage size; for example, halving the annulus clearance increases *p more than eight
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Fig. 6.38 Velocity and pressure
change through a generalized
Bernoulli obstruction meter.

times. Careful calibration is thus necessary. In Fig. 6.37 the laminar-flow concept has
been synthesized into a complete mass-flow system, with temperature control, differ-
ential pressure measurement, and a microprocessor all self-contained. The accuracy of
this device is rated at = 0.2 percent.

Bernoulli obstruction theory. Consider the generalized flow obstruction shown in Fig.
6.38. The flow in the basic duct of diameter D is forced through an obstruction of 
diameter d; the C ratio of the device is a key parameter

C ! %
D
d

% (6.122)

After leaving the obstruction, the flow may neck down even more through a vena con-
tracta of diameter D2 ( d, as shown. Apply the Bernoulli and continuity equations for
incompressible steady frictionless flow to estimate the pressure change:

Continuity: Q ! %
.
4

% D2V1 ! %
.
4

% D2
2V2

Bernoulli: p0 ! p1 + %12%#V1
2 ! p2 + %12%#V2

2
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Eliminating V1, we solve these for V2 or Q in terms of the pressure change p1 - p2:

%
A
Q

2
% ! V2 ! &%#(

2
1
(p
-
1 -

D2
4
p
/D

2)
4)

%'
1/2

(6.123)

But this is surely inaccurate because we have neglected friction in a duct flow, where
we know friction will be very important. Nor do we want to get into the business of
measuring vena contracta ratios D2/d for use in (6.123). Therefore we assume that
D2/D ! C and then calibrate the device to fit the relation

Q ! AtVt ! CdAt &%2(p
1
1

-
-

C
p2

4
)/#

%'
1/2

(6.124)

where subscript t denotes the throat of the obstruction. The dimensionless discharge
coefficient Cd accounts for the discrepancies in the approximate analysis. By dimen-
sional analysis for a given design we expect

Cd ! f(C, ReD) where ReD ! %
V

'
1D
% (6.125)

The geometric factor involving C in (6.124) is called the velocity-of-approach factor

E ! (1 - C4)-1/2 (6.126)

One can also group Cd and E in Eq. (6.124) to form the dimensionless flow coefficient 8

8 ! CdE ! %
(1 -

C
C
d

4)1/2% (6.127)

Thus Eq. (6.124) can be written in the equivalent form

Q ! 8At&%2(p1

#

- p2)
%'

1/2
(6.128)

Obviously the flow coefficient is correlated in the same manner:

8 ! f(C, ReD) (6.129)

Occasionally one uses the throat Reynolds number instead of the approach Reynolds
number

Red ! %
V
'
td% ! %

R
C
eD% (6.130)

Since the design parameters are assumed known, the correlation of 8 from Eq. (6.129)
or of Cd from Eq. (6.125) is the desired solution to the fluid-metering problem.

The mass flow is related to Q by

ṁ! #Q (6.131)

and is thus correlated by exactly the same formulas.
Figure 6.39 shows the three basic devices recommended for use by the International

Organization for Standardization (ISO) [31]: the orifice, nozzle, and venturi tube.

Thin-plate orifice. The thin-plate orifice, Fig. 6.39b, can be made with C in the range
of 0.2 to 0.8, except that the hole diameter d should not be less than 12.5 mm. To mea-
sure p1 and p2, three types of tappings are commonly used:
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Fig. 6.39 International standard
shapes for the three primary
Bernoulli obstruction-type meters:
(a) long radius nozzle; (b) thin-
plate orifice; (c) venturi nozzle.
(From Ref. 31 by permission of the
International Organization for
Standardization.)

1. Corner taps where the plate meets the pipe wall
2. D: %12%D taps: pipe-wall taps at D upstream and %12%D downstream
3. Flange taps: 1 in (25 mm) upstream and 1 in (25 mm) downstream of the plate,

regardless of the size D

Types 1 and 2 approximate geometric similarity, but since the flange taps 3 do not,
they must be correlated separately for every single size of pipe in which a flange-tap
plate is used [30, 31].

Figure 6.40 shows the discharge coefficient of an orifice with D: %12%D or type 2 taps
in the Reynolds-number range ReD ! 104 to 107 of normal use. Although detailed charts
such as Fig. 6.37 are available for designers [30], the ASME recommends use of the
curve-fit formulas developed by the ISO [31]. The basic form of the curve fit is [42]

Cd ! f(C) + 91.71C2.5ReD
-0.75 + %

1
0.

-
09C

C

4

4% F1 - 0.0337C3F2 (6.132)

where f(C) ! 0.5959 + 0.0312C2.1 - 0.184C8

The correlation factors F1 and F2 vary with tap position:

Corner taps: F1 ! 0 F2 ! 0 (6.133a)
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Fig. 6.40 Discharge coefficient for
a thin-plate orifice with D: %12%D taps,
plotted from Eqs. (6.132) and
(6.133b).

D: %12%D taps: F1 ! 0.4333 F2 ! 0.47 (6.133b)

Flange taps: F2 ! %
D

1
(in)
% F1 ! (6.133c)

Note that the flange taps (6.133c), not being geometrically similar, use raw diameter
in inches in the formula. The constants will change if other diameter units are used.
We cautioned against such dimensional formulas in Example 1.4 and Eq. (5.17) and
give Eq. (6.133c) only because flange taps are widely used in the United States.

Flow nozzle. The flow nozzle comes in two types, a long-radius type shown in Fig.
6.39a and a short-radius type (not shown) called the ISA 1932 nozzle [30, 31]. The
flow nozzle, with its smooth rounded entrance convergence, practically eliminates the
vena contracta and gives discharge coefficients near unity. The nonrecoverable loss is
still large because there is no diffuser provided for gradual expansion.

The ISO recommended correlation for long-radius-nozzle discharge coefficient is

Cd ! 0.9965 - 0.00653C1/2#%
R
10

eD

6

%$
1/2

! 0.9965 - 0.00653#%
R
10

e

6

d
%$

1/2
(6.134)

The second form is independent of the C ratio and is plotted in Fig. 6.41. A similar
ISO correlation is recommended for the short-radius ISA 1932 flow nozzle

%
D

1
(in)
% D < 2.3 in

%%%%
0.4333 2.0 ; D ; 2.3 in
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Fig. 6.41 Discharge coefficient for
long-radius nozzle and classical
Herschel-type venturi.

Cd ! 0.9900 - 0.2262C4.1

+ (0.000215 - 0.001125C + 0.00249C4.7)#%
R
10

eD

6

%$
1.15

(6.135)

Flow nozzles may have C values between 0.2 and 0.8.

Venturi meter. The third and final type of obstruction meter is the venturi, named in honor
of Giovanni Venturi (1746–1822), an Italian physicist who first tested conical expansions
and contractions. The original, or classical, venturi was invented by a U.S. engineer, Clemens
Herschel, in 1898. It consisted of a 21° conical contraction, a straight throat of diameter d
and length d, then a 7 to 15° conical expansion. The discharge coefficient is near unity, and
the nonrecoverable loss is very small. Herschel venturis are seldom used now.

The modern venturi nozzle, Fig. 6.39c, consists of an ISA 1932 nozzle entrance and
a conical expansion of half-angle no greater than 15°. It is intended to be operated in
a narrow Reynolds-number range of 1.5 " 105 to 2 " 106. Its discharge coefficient,
shown in Fig. 6.42, is given by the ISO correlation formula

Cd ! 0.9858 - 0.196C4.5 (6.136)

It is independent of ReD within the given range. The Herschel venturi discharge varies
with ReD but not with C, as shown in Fig. 6.41. Both have very low net losses.

The choice of meter depends upon the loss and the cost and can be illustrated by
the following table:

Type of meter Net head loss Cost

Orifice Large Small
Nozzle Medium Medium
Venturi Small Large

As so often happens, the product of inefficiency and initial cost is approximately constant.
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Fig. 6.43 Nonrecoverable head loss
in Bernoulli obstruction meters.
(Adapted from Ref. 30.)

402 Chapter 6 Viscous Flow in Ducts

3.0

2.5

2.0

1.5

1.0

0.5

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8

β

Thin-plate
orifice

Flow
nozzle

Venturi:

15° cone angle
7° cone angle

K
m

 =
h m

V
t2 /(

2g
)

0.3 0.4 0.5 0.6 0.7 0.8
0.92

0.94

0.96

0.98

1.00

β

Cd

International
standards:

0.316 <    < 0.775
1.5 × 105 < ReD < 2.0 × 106

β

Fig. 6.42 Discharge coefficient for
a venturi nozzle.

The average nonrecoverable head losses for the three types of meters, expressed as
a fraction of the throat velocity head V t

2/(2g), are shown in Fig. 6.43. The orifice has
the greatest loss and the venturi the least, as discussed. The orifice and nozzle simu-
late partially closed valves as in Fig. 6.18b, while the venturi is a very minor loss.
When the loss is given as a fraction of the measured pressure drop, the orifice and noz-
zle have nearly equal losses, as Example 6.21 will illustrate.



Part (a)

Part (b)

Part (c)

The other types of instruments discussed earlier in this section can also serve as
flowmeters if properly constructed. For example, a hot wire mounted in a tube can be
calibrated to read volume flow rather than point velocity. Such hot-wire meters are
commercially available, as are other meters modified to use velocity instruments. For
further details see Ref. 30.

EXAMPLE 6.21

We want to meter the volume flow of water (# ! 1000 kg/m3, ' ! 1.02 " 10-6 m2/s) moving
through a 200-mm-diameter pipe at an average velocity of 2.0 m/s. If the differential pressure
gage selected reads accurately at p1 - p2 ! 50,000 Pa, what size meter should be selected for
installing (a) an orifice with D: %12%D taps, (b) a long-radius flow nozzle, or (c) a venturi nozzle?
What would be the nonrecoverable head loss for each design?

Solution

Here the unknown is the C ratio of the meter. Since the discharge coefficient is a complicated
function of C, iteration will be necessary. We are given D ! 0.2 m and V1 ! 2.0 m/s. The pipe-
approach Reynolds number is thus

ReD ! %
V

'
1D
% ! %

1.
(
0
2
2
.0

"
)(0

1
.
0
2

-

)
6% ! 392,000

For all three cases [(a) to (c)] the generalized formula (6.128) holds:

Vt ! %
V
C

1
2% ! 8&%2(p1

#
- p2)
%'

1/2
8 ! %

(1 -
C
C
d

4)1/2% (1)

where the given data are V1 ! 2.0 m/s, # ! 1000 kg/m3, and *p ! 50,000 Pa. Inserting these
known values into Eq. (1) gives a relation between C and 8:

%
2
C
.
2
0
% ! 8&%2(5

1
0
0
,
0
0
0
00)

%'
1/2

or C2 ! %
0
8
.2
% (2)

The unknowns are C (or 8) and Cd. Parts (a) to (c) depend upon the particular chart or formula
needed for Cd ! fcn(ReD, C). We can make an initial guess C ! 0.5 and iterate to convergence.

For the orifice with D: %12%D taps, use Eq. (6.132) or Fig. 6.40. The iterative sequence is

C1 ! 0.5, Cd1 ! 0.604, 81 ! 0.624, C2 ! 0.566, Cd2 ! 0.606, 82 ! 0.640, C3 ! 0.559

We have converged to three figures. The proper orifice diameter is

d ! CD ! 112 mm Ans. (a)

For the long-radius flow nozzle, use Eq. (6.134) or Fig. 6.41. The iterative sequence is

C1 ! 0.5, Cd1 ! 0.9891, 81 ! 1.022, C2 ! 0.442, Cd2 ! 0.9896, 82 ! 1.009, C3 ! 0.445

We have converged to three figures. The proper nozzle diameter is

d ! CD ! 89 mm Ans. (b)

For the venturi nozzle, use Eq. (6.136) or Fig. 6.42. The iterative sequence is

C1 ! 0.5, Cd1 ! 0.977, 81 ! 1.009, C2 ! 0.445, Cd2 ! 0.9807, 82 ! 1.0004, C3 ! 0.447

We have converged to three figures. The proper venturi diameter is

d ! CD ! 89 mm Ans. (c)
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Summary

These meters are of similar size, but their head losses are not the same. From Fig. 6.43 for the
three different shapes we may read the three K factors and compute

hm,orifice ! 3.5 m hm,nozzle ! 3.6 m hm,venturi ! 0.8 m

The venturi loss is only about 22 percent of the orifice and nozzle losses.

Solution

The iteration encountered in this example is ideal for the EES. Input the data in SI units:

Rho ! 1000 Nu ! 1.02E-6 D ! 0.2 V ! 2.0 DeltaP ! 50000

Then write out the basic formulas for Reynolds number, throat velocity and flow coefficient:

Re ! V!D/Nu

Vt ! V/Beta+2

Alpha ! Cd/(1-Beta+4)+0.5

Vt ! Alpha!SQRT(2!DeltaP/Rho)

Finally, input the proper formula for the discharge coefficient. For example, for the flow nozzle,

Cd ! 0.9965 - 0.00653!Beta+0.5!(1E6/Re)+0.5

When asked to Solve the equation, EES at first complains of dividing by zero. One must then
tighten up the Variable Information by not allowing C, 8, or Cd to be negative and, in particu-
lar, by confining C to its practical range 0.2 ( C ( 0.9. EES then readily announces correct an-
swers for the flow nozzle:

Alpha ! 1.0096 Cd ! 0.9895 Beta ! 0.4451

This chapter is concerned with internal pipe and duct flows, which are probably the
most common problems encountered in engineering fluid mechanics. Such flows are
very sensitive to the Reynolds number and change from laminar to transitional to tur-
bulent flow as the Reynolds number increases.

The various Reynolds-number regimes are outlined, and a semiempirical approach
to turbulent-flow modeling is presented. The chapter then makes a detailed analysis of
flow through a straight circular pipe, leading to the famous Moody chart (Fig. 6.13)
for the friction factor. Possible uses of the Moody chart are discussed for flow-rate and
sizing problems, as well as the application of the Moody chart to noncircular ducts us-
ing an equivalent duct “diameter.” The addition of minor losses due to valves, elbows,
fittings, and other devices is presented in the form of loss coefficients to be incorpo-
rated along with Moody-type friction losses. Multiple-pipe systems are discussed briefly
and are seen to be quite complex algebraically and appropriate for computer solution.

Diffusers are added to ducts to increase pressure recovery at the exit of a system.
Their behavior is presented as experimental data, since the theory of real diffusers is
still not well developed. The chapter ends with a discussion of flowmeters, especially
the pitot-static tube and the Bernoulli-obstruction type of meter. Flowmeters also re-
quire careful experimental calibration.
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