7.1 Reynolds-Number
and Geometry Effects

Chapter 7
Flow Past
Immersed Bodies

Motivation. This chapter is devoted to “external” flows around bodies immersed in a
fluid stream. Such a flow will have viscous (shear and no-slip) effects near the body
surfaces and in its wake, but will typically be nearly inviscid far from the body. These
are unconfined boundary-layer flows.

Chapter 6 considered “internal” flows confined by the walls of a duct. In that case
the viscous boundary layers grow from the sidewalls, meet downstream, and fill the
entire duct. Viscous shear is the dominant effect. For example, the Moody chart of Fig.
6.13 is essentially a correlation of wall shear stress for long ducts of constant cross
section.

External flows are unconfined, free to expand no matter how thick the viscous lay-
ers grow. Although boundary-layer theory (Sec. 7.3) is helpful in understanding exter-
nal flows, complex body geometries usually require experimental data on the forces
and moments caused by the flow. Such immersed-body flows are commonly encoun-
tered in engineering studies: aerodynamics (airplanes, rockets, projectiles), hydrody-
namics (ships, submarines, torpedos), transportation (automobiles, trucks, cycles), wind
engineering (buildings, bridges, water towers, wind turbines), and ocean engineering
(buoys, breakwaters, pilings, cables, moored instruments). This chapter provides data
and analysis to assist in such studies.

The technique of boundary-layer (BL) analysis can be used to compute viscous effects
near solid walls and to “patch” these onto the outer inviscid motion. This patching is
more successful as the body Reynolds number becomes larger, as shown in Fig. 7.1.

In Fig. 7.1 a uniform stream U moves parallel to a sharp flat plate of length L. If
the Reynolds number UL/v is low (Fig. 7.1a), the viscous region is very broad and ex-
tends far ahead and to the sides of the plate. The plate retards the oncoming stream
greatly, and small changes in flow parameters cause large changes in the pressure dis-
tribution along the plate. Thus, although in principle it should be possible to patch the
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viscous and inviscid layers in a mathematical analysis, their interaction is strong and
nonlinear [1 to 3]. There is no existing simple theory for external-flow analysis at
Reynolds numbers from 1 to about 1000. Such thick-shear-layer flows are typically
studied by experiment or by numerical modeling of the flow field on a digital com-
puter [4].

A high-Reynolds-number flow (Fig. 7.1b) is much more amenable to boundary-layer
patching, as first pointed out by Prandtl in 1904. The viscous layers, either laminar or
turbulent, are very thin, thinner even than the drawing shows. We define the boundary-
layer thickness 6 as the locus of points where the velocity u parallel to the plate reaches
99 percent of the external velocity U. As we shall see in Sec. 7.4, the accepted for-
mulas for flat-plate flow are

Re!2
0.16

1/7
Re,

5.0 .
[ — laminar (7.1a)

turbulent (7.1b)



Fig. 7.2 Illustration of the strong
interaction between viscous and in-
viscid regions in the rear of blunt-
body flow: (a) idealized and defi-
nitely false picture of blunt-body
flow; (b) actual picture of blunt-
body flow.
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where Re, = Ux/v is called the local Reynolds number of the flow along the plate sur-
face. The turbulent-flow formula applies for Re, greater than approximately 10°.
Some computed values from Eq. (7.1) are

Re, 10* 10° 10° 107 10®
(8/%)1am 0.050 0.016 0.005
(8/%)urb 0.022 0.016 0.011

The blanks indicate that the formula is not applicable. In all cases these boundary lay-
ers are so thin that their displacement effect on the outer inviscid layer is negligible.
Thus the pressure distribution along the plate can be computed from inviscid theory as
if the boundary layer were not even there. This external pressure field then “drives”
the boundary-layer flow, acting as a forcing function in the momentum equation along
the surface. We shall explain this boundary-layer theory in Secs. 7.4 and 7.5.

For slender bodies, such as plates and airfoils parallel to the oncoming stream, we
conclude that this assumption of negligible interaction between the boundary layer and
the outer pressure distribution is an excellent approximation.

For a blunt-body flow, however, even at very high Reynolds numbers, there is a dis-
crepancy in the viscous-inviscid patching concept. Figure 7.2 shows two sketches of
flow past a two- or three-dimensional blunt body. In the idealized sketch (7.2a), there
is a thin film of boundary layer about the body and a narrow sheet of viscous wake in
the rear. The patching theory would be glorious for this picture, but it is false. In the
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actual flow (Fig. 7.2b), the boundary layer is thin on the front, or windward, side of
the body, where the pressure decreases along the surface (favorable pressure gradient).
But in the rear the boundary layer encounters increasing pressure (adverse pressure
gradient) and breaks off, or separates, into a broad, pulsating wake. (See Fig. 5.2a for
a photograph of a specific example.) The mainstream is deflected by this wake, so that
the external flow is quite different from the prediction from inviscid theory with the
addition of a thin boundary layer.

The theory of strong interaction between blunt-body viscous and inviscid layers is
not well developed. Flows like that of Fig. 7.2b are normally studied experimentally.
Reference 5 is an example of efforts to improve the theory of separated-boundary-layer
flows. Reference 6 is a textbook devoted to separated flow.

EXAMPLE 7.1

A long, thin flat plate is placed parallel to a 20-ft/s stream of water at 20°C. At what distance x
from the leading edge will the boundary-layer thickness be 1 in?

Solution

Since we do not know the Reynolds number, we must guess which of Egs. (7.1) applies. From
Table 1.4 for water, » = 1.09 X 1075 ft*/s; hence

U _ 20 ft/s

=——=——" =184 % 10° ft"!
v 1.09 X 1073 ft*/s
With 8 = 1in = 4 ft, try Eq. (7.1a):
. 5 5
L flow: =
aminar flow X (Uxin)”?

Sy G 07184 X 10° f™

S > =511 ft

or

Now we can test the Reynolds number to see whether the formula applied:

Re, = Ux _ (0 ft/s)(S_lsl f;) 04 X 10}
v 1.09 X 1075 s

This is impossible since the maximum Re, for laminar flow past a flat plate is 3 X 10°. So we
try again with Eq. (7.1b):

o 0.16
Turbulent flow: —=—7
urbulent flow X U

scum¥ e [ G (.84 x 10° f 17
or X=\|— - =

7/6
o016 = 016 } = (4.09)® = 5.17 ft Ans.
— (0 fUs)(5.17 ft)

=95x10°
1.09 X 1073 ft*/s 95 %10

Test Re,

This is a perfectly proper turbulent-flow condition; hence we have found the correct position x
on our second try.




7.2 Momentum-Integral
Estimates

Karman’s Analysis of the
Flat Plate

Fig. 7.3 Growth of a boundary
layer on a flat plate.

7.2 Momentum-Integral Estimates 431

When we derived the momentum-integral relation, Eq. (3.37), and applied it to a flat-
plate boundary layer in Example 3.11, we promised to consider it further in Chap. 7.
Well, here we are! Let us review the problem, using Fig. 7.3.

A shear layer of unknown thickness grows along the sharp flat plate in Fig. 7.3. The
no-slip wall condition retards the flow, making it into a rounded profile u(y), which
merges into the external velocity U = constant at a “thickness” y = 6(x). By utilizing
the control volume of Fig. 3.11, we found (without making any assumptions about lam-
inar versus turbulent flow) in Example 3.11 that the drag force on the plate is given by
the following momentum integral across the exit plane

8(x)
D(x) = pb fo w(U — u) dy (7.2)

where b is the plate width into the paper and the integration is carried out along a ver-
tical plane x = constant. You should review the momentum-integral relation (3.37) and
its use in Example 3.11.

Equation (7.2) was derived in 1921 by Karman [7], who wrote it in the convenient form
of the momentum thickness 0

S
D(x) = pbU?6 azf % (1 -~ %) dy (7.3)
0

Momentum thickness is thus a measure of total plate drag. Kdrmén then noted that the
drag also equals the integrated wall shear stress along the plate

Dx)=0»b f i 7,,(x) dx
0

ab _
dx

or br,, (7.4)

Meanwhile, the derivative of Eq. (7.3), with U = constant, is
dD > db
dx p dx

By comparing this with Eq. (7.4) Kdrman arrived at what is now called the momentum-
integral relation for flat-plate boundary-layer flow

y
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» do

7.5
dx (72)

Ty =P

It is valid for either laminar or turbulent flat-plate flow.
To get a numerical result for laminar flow, Karman assumed that the velocity pro-
files had an approximately parabolic shape

2 2
ux, y) ~ U<% - %) 0=y=dx (7.6)

which makes it possible to estimate both momentum thickness and wall shear

_P(y Y 2y V)2
9‘L<§‘?)(1‘?+¥>"y~ﬁs

(7.7)
ro=p |l <2V
ay y=0 1)
By substituting (7.7) into (7.5) and rearranging we obtain
5 dd~ 15 = dx (7.8)
U

where v = u/p. We can integrate from 0 to x, assuming that 6 = 0 at x = 0, the lead-
ing edge

1 52 = 15ux
2 U
B 12 55
or -~ 5.5(&) = w7 (7.9)

This is the desired thickness estimate. It is all approximate, of course, part of Kar-
man’s momentum-integral theory [7], but it is startlingly accurate, being only 10 per-
cent higher than the known exact solution for laminar flat-plate flow, which we gave
as Eq. (7.1a).

By combining Eqgs. (7.9) and (7.7) we also obtain a shear-stress estimate along the
plate

21, [ \2_ 073
= oU? = (R_%C) " Rel? (7.10)

Again this estimate, in spite of the crudeness of the profile assumption (7.6) is only 10
percent higher than the known exact laminar-plate-flow solution ¢, = 0.664/Re?,
treated in Sec. 7.4. The dimensionless quantity cy, called the skin-friction coefficient,
is analogous to the friction factor f in ducts.

A boundary layer can be judged as “thin” if, say, the ratio &/x is less than about 0.1.
This occurs at &x = 0.1 = 5.0/Re'? or at Re, = 2500. For Re, less than 2500 we can
estimate that boundary-layer theory fails because the thick layer has a significant effect
on the outer inviscid flow. The upper limit on Re, for laminar flow is about 3 X 10°,
where measurements on a smooth flat plate [8] show that the flow undergoes transition
to a turbulent boundary layer. From 3 X 10° upward the turbulent Reynolds number may
be arbitrarily large, and a practical limit at present is 5 X 10” for oil supertankers.
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Another interesting effect of a boundary layer is its small but finite displacement of
the outer streamlines. As shown in Fig. 7.4, outer streamlines must deflect outward a
distance 6*(x) to satisfy conservation of mass between the inlet and outlet

h B
f pUbdy=f pubdy — 8=h+ & (7.11)
0 0

The quantity 6* is called the displacement thickness of the boundary layer. To relate it
to u(y), cancel p and b from Eq. (7.11), evaluate the left integral, and slyly add and
subtract U from the right integrand:

S )
Uh=[ W+u—Uydy=0Uh+8)+[ - Udy
0 0

)
or 5* =f (1 —%) dy (7.12)
0

Thus the ratio of 6*/8 varies only with the dimensionless velocity-profile shape u/U.

Introducing our profile approximation (7.6) into (7.12), we obtain by integration the
approximate result

1 &* 1.83
oF = 3 1) Y R (7.13)

These estimates are only 6 percent away from the exact solutions for laminar flat-plate
flow given in Sec. 7.4: & = 0.3448 = 1.721x/Rel. Since &* is much smaller than x
for large Re, and the outer streamline slope V/U is proportional to &%, we conclude
that the velocity normal to the wall is much smaller than the velocity parallel to the
wall. This is a key assumption in boundary-layer theory (Sec. 7.3).

We also conclude from the success of these simple parabolic estimates that Kar-
mdan’s momentum-integral theory is effective and useful. Many details of this theory
are given in Refs. 1 to 3.

EXAMPLE 7.2

Are low-speed, small-scale air and water boundary layers really thin? Consider flow at U = 1
ft/s past a flat plate 1 ft long. Compute the boundary-layer thickness at the trailing edge for (a)
air and (b) water at 20°C.
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Part (a)

Part (b)

7.3 The Boundary-Layer
Equations

Solution

From Table A.3, vy, = 1.61 E-4 ft*/s. The trailing-edge Reynolds number thus is

UL _ (1fUs){ fo

161 B4 1o 0200

ReL =

Since this is less than 10°, the flow is presumed laminar, and since it is greater than 2500, the
boundary layer is reasonably thin. From Eq. (7.1a), the predicted laminar thickness is

2 -0 0.0634
X V6200
or, at x = 1 ft, 6 = 0.0634 ft = 0.76 in Ans. (a)

From Table A.2 vyquer = 1.08 E-5 ft*/s. The trailing-edge Reynolds number is

(1 ft/s)( ft)

Rer = 7 08 E-5 /s

=~ 92,600

This again satisfies the laminar and thinness conditions. The boundary-layer thickness is

o 5.0
—=——=0.0164
X V92,600
or, at x = 1 ft, 6 = 0.0164 ft = 0.20 in Ans. (b)

Thus, even at such low velocities and short lengths, both airflows and water flows satisfy the
boundary-layer approximations.

In Chaps. 4 and 6 we learned that there are several dozen known analytical laminar-
flow solutions [1 to 3]. None are for external flow around immersed bodies, although
this is one of the primary applications of fluid mechanics. No exact solutions are known
for turbulent flow, whose analysis typically uses empirical modeling laws to relate time-
mean variables.

There are presently three techniques used to study external flows: (1) numerical
(digital-computer) solutions, (2) experimentation, and (3) boundary-layer theory.

Computational fluid dynamics (CFD) is now well developed and described in ad-
vanced texts such as that by Anderson et al. [4]. Thousands of computer solutions
and models have been published; execution times, mesh sizes, and graphical pre-
sentations are improving each year. Both laminar- and turbulent-flow solutions have
been published, and turbulence modeling is a current research topic [9]. Except for
a brief discussion of computer analysis in Chap. 8, the topic of CFD is beyond our
scope here.

Experimentation is the most common method of studying external flows. Chapter
5 outlined the technique of dimensional analysis, and we shall give many nondimen-
sional experimental data for external flows in Sec. 7.6.

The third tool is boundary-layer theory, first formulated by Ludwig Prandtl in 1904.
We shall follow Prandtl’s ideas here and make certain order-of-magnitude assumptions
to greatly simplify the Navier-Stokes equations (4.38) into boundary-layer equations
which are solved relatively easily and patched onto the outer inviscid-flow field.
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One of the great achievements of boundary-layer theory is its ability to predict the
flow separation illustrated in Fig. 7.2b. Before 1904 no one realized that such thin shear
layers could cause such a gross effect as flow separation. Unfortunately, even today the-
ory cannot accurately predict the behavior of the separated-flow region and its interac-
tion with the outer layer. This is the weakness of boundary-layer theory, which we hope
will be overcome by intensive research into the dynamics of separated flows [6].

We consider only steady two-dimensional incompressible viscous flow with the x di-
rection along the wall and y normal to the wall, as in Fig. 7.3." We neglect gravity,
which is important only in boundary layers where fluid buoyancy is dominant [2, sec.
4.13]. From Chap. 4, the complete equations of motion consist of continuity and the
x- and y-momentum relations

ou  ov _

0 7.14
ox ady ( @
2 2
ORI ' ) Y i i (7.14b)
Ix ay dx dx dy
2 2
pu@_’_vﬂ:_a_P_,_Ma_’z’_,_a_'; (7.14¢)
ax -y dy ax=  dy

These should be solved for u, v, and p subject to typical no-slip, inlet, and exit bound-
ary conditions, but in fact they are too difficult to handle for most external flows.

In 1904 Prandtl correctly deduced that a shear layer must be very thin if the Reynolds
number is large, so that the following approximations apply:

Velocities: v<<u (7.15a)
Rates of change: ou < Ju v < v (7.15b)
ox dy ox ay

Our discussion of displacement thickness in the previous section was intended to jus-
tify these assumptions.
Applying these approximations to Eq. (7.14c) results in a powerful simplification

9P

or p = p(x) only (7.16)
ay

In other words, the y-momentum equation can be neglected entirely, and the pressure
varies only along the boundary layer, not through it. The pressure-gradient term in Eq.
(7.14b) is assumed to be known in advance from Bernoulli’s equation applied to the
outer inviscid flow

= —pU S~ (7.17)

"For a curved wall, x can represent the arc length along the wall and y can be everywhere normal to x
with negligible change in the boundary-layer equations as long as the radius of curvature of the wall is
large compared with the boundary-layer thickness [1 to 3].
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7.4 The Flat-Plate Boundary
Layer

Presumably we have already made the inviscid analysis and know the distribution of
U(x) along the wall (Chap. 8).
Meanwhile, one term in Eq. (7.14b) is negligible due to Eqgs. (7.15)

*u 0%u
P < 6y2 (7.18)

However, neither term in the continuity relation (7.14a) can be neglected—another
warning that continuity is always a vital part of any fluid-flow analysis.

The net result is that the three full equations of motion (7.14) are reduced to Prandtl’s
two boundary-layer equations

Ju v

Continuity: —+—=0 (7.19a)
ox dy
ou ou dUu 1 ot
Momentum along wall:  u (7 +v Lﬁ ~U—+— ! (7.19b)
dx dy dx p Jdy
Ju . .
m— laminar flow
dy
where T =
ou — .
P pu'v turbulent flow
ay

These are to be solved for u(x, y) and v(x, y), with U(x) assumed to be a known func-
tion from the outer inviscid-flow analysis. There are two boundary conditions on # and
one on v:

Aty = 0 (wall): u=v=20 (no slip) (7.20a)
Aty = 6(x) (outer stream): u = U(x) (patching) (7.20b)

Unlike the Navier-Stokes equations (7.14), which are mathematically elliptic and must
be solved simultaneously over the entire flow field, the boundary-layer equations (7.19)
are mathematically parabolic and are solved by beginning at the leading edge and
marching downstream as far as you like, stopping at the separation point or earlier if
you prefer.”

The boundary-layer equations have been solved for scores of interesting cases of
internal and external flow for both laminar and turbulent flow, utilizing the inviscid
distribution U(x) appropriate to each flow. Full details of boundary-layer theory and
results and comparison with experiment are given in Refs. 1 to 3. Here we shall con-
fine ourselves primarily to flat-plate solutions (Sec. 7.4).

The classic and most often used solution of boundary-layer theory is for flat-plate flow,
as in Fig. 7.3, which can represent either laminar or turbulent flow.

2For further mathematical details, see Ref. 2, sec. 2.8.



Laminar Flow

Table 7.1 The Blasius Velocity
Profile [1 to 3]

7.4 The Flat-Plate Boundary Layer 437

For laminar flow past the plate, the boundary-layer equations (7.19) can be solved ex-
actly for u and v, assuming that the free-stream velocity U is constant (dU/dx = 0).
The solution was given by Prandtl’s student Blasius, in his 1908 dissertation from G&t-
tingen. With an ingenious coordinate transformation, Blasius showed that the dimen-
sionless velocity profile #/U is a function only of the single composite dimensionless
variable (y)[U/(vx)]"*:
12
% =f(m 7= y(£> (7.21)
VX

where the prime denotes differentiation with respect to m. Substitution of (7.21) into
the boundary-layer equations (7.19) reduces the problem, after much algebra, to a sin-
gle third-order nonlinear ordinary differential equation for f

"3 =0 (7.22)
The boundary conditions (7.20) become
Aty =0: fO=f0)=0 (7.23a)
As y — oo f'(®) > 1.0 (7.23b)

This is the Blasius equation, for which accurate solutions have been obtained only by
numerical integration. Some tabulated values of the velocity-profile shape f'(n) = w/U
are given in Table 7.1.

Since u/U approaches 1.0 only as y — o, it is customary to select the boundary-
layer thickness 0 as that point where u/U = 0.99. From the table, this occurs at n =

5.0:
U 1/2
899%<_> = 5.0
129
) 5.0 .
or — = R Blasius (1908) (7.24)
X (G

y[U/(vx)] 172 ulU y[U/(vx)] vz ulU
0.0 0.0 2.8 0.81152
0.2 0.06641 3.0 0.84605
0.4 0.13277 32 0.87609
0.6 0.19894 34 0.90177
0.8 0.26471 3.6 0.92333
1.0 0.32979 3.8 0.94112
1.2 0.39378 4.0 0.95552
14 0.45627 4.2 0.96696
1.6 0.51676 44 0.97587
1.8 0.57477 4.6 0.98269
2.0 0.62977 4.8 0.98779
2.2 0.68132 5.0 0.99155
24 0.72899 o 1.00000
2.6 0.77246
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With the profile known, Blasius, of course, could also compute the wall shear and dis-
placement thickness

0664 & 1721

e = 5 5 7.25)
< Rc‘\/’ X Rc'\/’ ( )

Notice how close these are to our integral estimates, Egs. (7.9), (7.10), and (7.13).
When cfis converted to dimensional form, we have

0.332 172 1/2U1.5
Tw(X) = pxl/lzL

The wall shear drops off with x'/? because of boundary-layer growth and varies as ve-
locity to the 1.5 power. This is in contrast to laminar pipe flow, where 7,, « U and is
independent of x.

If 7,,(x) is substituted into Eq. (7.4), we compute the total drag force

D(x)=b f 7,(x) dx = 0.664bp"* "2 U x> (7.26)
0

The drag increases only as the square root of the plate length. The nondimensional
drag coefficient is defined as

_2D@) _ 1328

=2 T rez - 2L 7.27)
pU’bL  Re;” & (L) el

-D

Thus, for laminar plate flow, Cp, equals twice the value of the skin-friction coefficient
at the trailing edge. This is the drag on one side of the plate.

Karman pointed out that the drag could also be computed from the momentum re-
lation (7.2). In dimensionless form, Eq. (7.2) becomes

2 (Pu u
== L(1-%)a 7.28
» LoU( U)y (7.28)

This can be rewritten in terms of the momentum thickness at the trailing edge

_ 260

Cp 3 (7.29)
Computation of 6 from the profile u/U or from Cj, gives
0.664
g = W laminar flat plate (7.30)

Since 6 is so ill defined, the momentum thickness, being definite, is often used to cor-
relate data taken for a variety of boundary layers under differing conditions. The ratio
of displacement to momentum thickness, called the dimensionless-profile shape fac-
tor, is also useful in integral theories. For laminar flat-plate flow

ot 1.721

=—=—-=259 7.31

6  0.664 (73D
A large shape factor then implies that boundary-layer separation is about to
occur.



Fig. 7.5 Comparison of dimension-
less laminar and turbulent flat-plate
velocity profiles.
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If we plot the Blasius velocity profile from Table 7.1 in the form of u/U versus y/é,
we can see why the simple integral-theory guess, Eq. (7.6), was such a great success.
This is done in Fig. 7.5. The simple parabolic approximation is not far from the true
Blasius profile; hence its momentum thickness is within 10 percent of the true value.
Also shown in Fig. 7.5 are three typical turbulent flat-plate velocity profiles. Notice how
strikingly different in shape they are from the laminar profiles. Instead of decreasing
monotonically to zero, the turbulent profiles are very flat and then drop off sharply at
the wall. As you might guess, they follow the logarithmic-law shape and thus can be
analyzed by momentum-integral theory if this shape is properly represented.

The laminar flat-plate boundary layer eventually becomes turbulent, but there is no
unique value for this change to occur. With care in polishing the wall and keeping the
free stream quiet, one can delay the transition Reynolds number to Re, . = 3 E6 [8].
However, for typical commercial surfaces and gusty free streams, a more realistic value
is Re,, = 5 ES.

EXAMPLE 7.3

A sharp flat plate with L = 1 m and » = 3 m is immersed parallel to a stream of velocity 2 m/s.
Find the drag on one side of the plate, and at the trailing edge find the thicknesses 8, 6*, and 6
for (a) air, p = 1.23 kg/m> and v = 1.46 X 10~° m%/s, and (b) water, p = 1000 kg/m> and » =
1.02 X 10~° m?s.
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Part (a)

Part (b)

Solution

The airflow Reynolds number is

VL _ (2.0 m/s)(1.0 m)

———— = 137,000
v 1.46 X 107> m“/s

Since this is less than 3 X 10°, we assume that the boundary layer is laminar. From Eq. (7.27),
the drag coefficient is

1.328

= 7(137 000)2 = 0.00359

D

Thus the drag on one side in the airflow is
D = CpipU?bL = 0.00359(3)(1.23)(2.0)*(3.0)(1.0) = 0.0265 N Ans. (a)
The boundary-layer thickness at the end of the plate is

5.0 5.0
L Rel? ~ (137,000)2 ~ 0.0135

«%]

or 0 =0.0135(1.0) = 0.0135 m = 13.5 mm Ans. (a)

We find the other two thicknesses simply by ratios:

sk
o* = 1721 6 = 4.65 mm 0= 8 = 1.79 mm Ans. (a)
5.0 2.59
Notice that no conversion factors are needed with SI units.
The water Reynolds number is
2.0(1.0) 6
Re;, = —————=1.96 X 10
= Toxis

This is rather close to the critical value of 3 X 10°, so that a rough surface or noisy free stream
might trigger transition to turbulence; but let us assume that the flow is laminar. The water drag
coefficient is

1.328
Cp=——=22_— = 0.000949
P (1.96 X 10972
and D = 0.000949(1)(1000)(2.0)%(3.0)(1.0) = 5.70 N Ans. (b)

The drag is 215 times more for water in spite of the higher Reynolds number and lower drag

coefficient because water is 57 times more viscous and 813 times denser than air. From Eq.

(7.26), in laminar flow, it should have (57)"/%(813)"* = 7.53(28.5) = 215 times more drag.
The boundary-layer thickness is given by

5 5.0
L= =(.00357
L (1.96 X 102 0.0035
or 5= 0.00357(1000 mm) = 3.57 mm Ans. (b)

By scaling down we have
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sk
B S L P, Ans. (b)

S
5.0 2.59

The water layer is 3.8 times thinner than the air layer, which reflects the square root of the 14.3
ratio of air to water kinematic viscosity.

There is no exact theory for turbulent flat-plate flow, although there are many elegant
computer solutions of the boundary-layer equations using various empirical models for
the turbulent eddy viscosity [9]. The most widely accepted result is simply an integal
analysis similar to our study of the laminar-profile approximation (7.6).

We begin with Eq. (7.5), which is valid for laminar or turbulent flow. We write it
here for convenient reference:

T,(x) = pU* 46 (7.32)
dx

From the definition of ¢, Eq. (7.10), this can be rewritten as

=2— 7.33

Cr dx ( )

Now recall from Fig. 7.5 that the turbulent profiles are nowhere near parabolic. Going

back to Fig. 6.9, we see that flat-plate flow is very nearly logarithmic, with a slight

outer wake and a thin viscous sublayer. Therefore, just as in turbulent pipe flow, we
assume that the logarithmic law (6.21) holds all the way across the boundary layer

% 172
Ly u*:(i) (7.34)

u* K v p

with, as usual, k = 0.41 and B = 5.0. At the outer edge of the boundary layer, y =6
and u = U, and Eq. (7.34) becomes
*
U_1, % g (7.35)
u* kK v
But the definition of the skin-friction coefficient, Eq. (7.10), is such that the following
identities hold:

172 # cp\172
v (2) o _ Res(_f) (7.36)
u cr v 2
Therefore Eq. (7.35) is a skin-friction law for turbulent flat-plate flow
2\112 cr\12
(—) ~2.44 In [Res(—) } + 5.0 (7.37)
cr 2

It is a complicated law, but we can at least solve for a few values and list them:

Res | 10* | 10° | 10° | 107

cr | 0.00493 | 0.00315 | 0.00217 | 0.00158
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Following a suggestion of Prandtl, we can forget the complex log friction law (7.37)
and simply fit the numbers in the table to a power-law approximation

¢~ 0.02 Re; " (7.38)

This we shall use as the left-hand side of Eq. (7.33). For the right-hand side, we need
an estimate for 6(x) in terms of 6(x). If we use the logarithmic-law profile (7.34), we
shall be up to our hips in logarithmic integrations for the momentum thickness. Instead
we follow another suggestion of Prandtl, who pointed out that the turbulent profiles in
Fig. 7.5 can be approximated by a one-seventh-power law

1/7
(%)mrb ~ (%) (7.39)

This is shown as a dashed line in Fig. 7.5. It is an excellent fit to the low-Reynolds-
number turbulent data, which were all that were available to Prandtl at the time. With
this simple approximation, the momentum thickness (7.28) can easily be evaluated:

_ 8 l 1/7 _ l 1/7 _l
0~L<6> [1 (5) ]dy—né (7.40)

We accept this result and substitute Eqs. (7.38) and (7.40) into Karman’s momentum
law (7.33)

c;=0.02 Re; =2 4 (l 5)

dx \72
_ do d(Red)
Re;'*=9.72—=19.72 7.41
o © dx d(Re,) (741)
Separate the variables and integrate, assuming 6 = 0 at x = 0:
O 0.16
Res;~0.16 Re®”  or f}z RC.,E (7.42)

Thus the thickness of a turbulent boundary layer increases as x7, far more rapidly
than the laminar increase x'/. Equation (7.42) is the solution to the problem, because
all other parameters are now available. For example, combining Eqs. (7.42) and (7.38),
we obtain the friction variation

0.027 R
cp= 71{&\/7 (7.43)
Writing this out in dimensional form, we have
0.0135u" 7087017
Tw,turb = 7 (7.44)

Turbulent plate friction drops slowly with x, increases nearly as p and U?, and is rather
insensitive to viscosity.

We can evaluate the drag coefficient from Eq. (7.29)
0031 7

Cp= RC,I/7 = *6* (j/([‘) (7.45)




Fig. 7.6 Drag coefficient of laminar
and turbulent boundary layers on
smooth and rough flat plates. This
chart is the flat-plate analog of the
Moody diagram of Fig. 6.13.
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Then Cp, is only 16 percent greater than the trailing-edge skin friction [compare with
Eq. (7.27) for laminar flow].
The displacement thickness can be estimated from the one-seventh-power law and

Eq. (7.12):
5 1/7
y 1
oF =~ 1—(= dy=—26 7.46
Cle=(5 o= 04
The turbulent flat-plate shape factor is approximately
" 1
=2 S =13 (7.47)
0 =

These are the basic results of turbulent flat-plate theory.

Figure 7.6 shows flat-plate drag coefficients for both laminar-and turbulent-flow
conditions. The smooth-wall relations (7.27) and (7.45) are shown, along with the ef-
fect of wall roughness, which is quite strong. The proper roughness parameter here is
x/e or L/e, by analogy with the pipe parameter €/d. In the fully rough regime, Cp, is in-
dependent of the Reynolds number, so that the drag varies exactly as U” and is inde-

0.014 \
\ | 200
—\ Fully rough
Eq. (7.48D) L _
0.012 \ e = 300
/\‘
\
\. 500
0.010 -
_/ \
\
\
\ 1000
0.008
\
c \ 2000
D
//r\\
0.006 s 5000
N 104
i I
\ \>¢ 23l
0.004 = 4
Turbulent —— ~ 5% 10
smooth S~ o _
Eq. (7.45) | 2x100 ==
0.002 Transition I~ \1{.6
Laminar: Eq, (7.49)
Eq. (7.27)
0
10° 10° 107 108 10°
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Part (a)

Part (b)

pendent of w. Reference 2 presents a theory of rough flat-plate flow, and Ref. 1 gives
a curve fit for skin friction and drag in the fully rough regime:

X\ 23
cp= (2.87 + 1.58 log ;) (7.48a)

L —2.5
Cp= (1.89 + 1.62 log :) (7.48b)
Equation (7.48b) is plotted to the right of the dashed line in Fig. 7.6. The figure also
shows the behavior of the drag coefficient in the transition region 5 X 10° < Re; <
8 X 107, where the laminar drag at the leading edge is an appreciable fraction of the
total drag. Schlichting [1] suggests the following curve fits for these transition drag
curves depending upon the Reynolds number Re,,,,; where transition begins:

0.031 1440

_ _ 5
Re}‘/7 ReL Retrans 5X10 (74961)
= 8700
0.031 3 .
Rel7  Re,  Xewans =310 (7.49b)

EXAMPLE 74

A hydrofoil 1.2 ft long and 6 ft wide is placed in a water flow of 40 ft/s, with p = 1.99
slugs/ft® and v = 0.000011 ft*/s. (a) Estimate the boundary-layer thickness at the end of the
plate. Estimate the friction drag for (b) turbulent smooth-wall flow from the leading edge,
(¢) laminar turbulent flow with Reans = 5 X 10°, and (d) turbulent rough-wall flow with € =
0.0004 ft.

Solution

The Reynolds number is

UL _ (40 ft/s)(1.2 fH)

=436 X 10°
0.000011 ft¥/s 36 %10

ReL =

Thus the trailing-edge flow is certainly turbulent. The maximum boundary-layer thickness would
occur for turbulent flow starting at the leading edge. From Eq. (7.42),

S(L) 0.16
2 - 2 —0.018
L (4.36 X 1097
or 5 =0.018(1.2 ft) = 0.0216 ft Ans. (a)

This is 7.5 times thicker than a fully laminar boundary layer at the same Reynolds number.

For fully turbulent smooth-wall flow, the drag coefficient on one side of the plate is, from Eq.
(7.45),

0.031
—= = 0.00349

> =436 x 109
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Then the drag on both sides of the foil is approximately
D = 2Cp(3pUHDL = 2(0.00349)(3)(1.99)(40)*(6.0)(1.2) = 80 Ib Ans. (b)
With a laminar leading edge and Rey,,s = 5 X 10°, Eq. (7.49a) applies:
1440
=0.00349 — —————==0.00316
o T I3 % 10°
The drag can be recomputed for this lower drag coefficient:
D = 2Cp(pUHbL = 72 Ibf Ans. (c)

Finally, for the rough wall, we calculate

L__12ft o0
e 0.0004 ft

From Fig. 7.6 at Re; = 4.36 X 105, this condition is just inside the fully rough regime. Equa-
tion (7.48b) applies:
Cp = (1.89 + 1.62 log 3000) >* = 0.00644
and the drag estimate is
D = 2Cp(3pUAbL = 148 1bf Ans. (d)

This small roughness nearly doubles the drag. It is probable that the total hydrofoil drag is still
another factor of 2 larger because of trailing-edge flow-separation effects.

The flat-plate analysis of the previous section should give us a good feeling for the be-
havior of both laminar and turbulent boundary layers, except for one important effect:
flow separation. Prandtl showed that separation like that in Fig. 7.2b is caused by ex-
cessive momentum loss near the wall in a boundary layer trying to move downstream
against increasing pressure, dp/dx >0, which is called an adverse pressure gradient.
The opposite case of decreasing pressure, dp/dx <0, is called a favorable gradient,
where flow separation can never occur. In a typical immersed-body flow, e.g., Fig. 7.2b,
the favorable gradient is on the front of the body and the adverse gradient is in the rear,
as discussed in detail in Chap. 8.

We can explain flow separation with a geometric argument about the second deriv-
ative of velocity u at the wall. From the momentum equation (7.190) at the wall, where
u = v =0, we obtain

ar| _ Pu|  __ ., dU_dp
3)/ wall ® ay2 wall dx dx
2
or a_th = L d_p (7.50)
ay wall 4 dx

3This section may be omitted without loss of continuity.
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Fig. 7.7 Effect of pressure gradient
on boundary-layer profiles; PI =

point of inflection.

for either laminar or turbulent flow. Thus in an adverse gradient the second derivative of
velocity is positive at the wall; yet it must be negative at the outer layer (y = 8) to merge
smoothly with the mainstream flow U(x). It follows that the second derivative must pass
through zero somewhere in between, at a point of inflection, and any boundary-
layer profile in an adverse gradient must exhibit a characteristic S shape.

Figure 7.7 illustrates the general case. In a favorable gradient (Fig. 7.7a) the profile

U U
> >
u u
> >
PI
(a) Favorable (b) Zero
gradient: gradient:
dUu dUu
>0 =0
dx dx
d, d
P <o P -0
dx dx
No separation, No separation,
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>0
dx
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>
EE——
u
>
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(]~ Backflow
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1,=0 N

(c) Weak adverse

gradient: gradient:
au_ Zero slope
dx at the wall:
dp >0 Separation
dx

No separation,

PI in the flow

(d) Critical adverse  (e) Excessive adverse

gradient:

Backflow
at the wall:

Separated
flow region



Fig. 7.8 Boundary-layer growth and
separation in a nozzle-diffuser con-
figuration.
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is very rounded, there is no point of inflection, there can be no separation, and lami-
nar profiles of this type are very resistant to a transition to turbulence [1 to 3].

In a zero pressure gradient (Fig. 7.7b), e.g., flat-plate flow, the point of inflection
is at the wall itself. There can be no separation, and the flow will undergo transition
at Re, no greater than about 3 X 10°, as discussed earlier.

In an adverse gradient (Fig. 7.7¢ to e), a point of inflection (PI) occurs in the bound-
ary layer, its distance from the wall increasing with the strength of the adverse gradi-
ent. For a weak gradient (Fig. 7.7¢) the flow does not actually separate, but it is vul-
nerable to transition to turbulence at Re, as low as 10° [1, 2]. At a moderate gradient,
a critical condition (Fig. 7.7d) is reached where the wall shear is exactly zero (du/dy =
0). This is defined as the separation point (7,, = 0), because any stronger gradient will
actually cause backflow at the wall (Fig. 7.7¢): the boundary layer thickens greatly,
and the main flow breaks away, or separates, from the wall (Fig. 7.2b).

The flow profiles of Fig. 7.7 usually occur in sequence as the boundary layer pro-
gresses along the wall of a body. For example, in Fig. 7.2a, a favorable gradient oc-
curs on the front of the body, zero pressure gradient occurs just upstream of the shoul-
der, and an adverse gradient occurs successively as we move around the rear of the
body.

A second practical example is the flow in a duct consisting of a nozzle, throat, and
diffuser, as in Fig. 7.8. The nozzle flow is a favorable gradient and never separates, nor

Separation
point
7, =0
Boundary
layers Profile point
of inflection @ckf]ow
—_ P o(x) U(x)
Nearly
inviscid — -4 — =X
core flow
= 5 Dividing
T ———_ }—| _streamline
Separation <<V
Nozzle: Throat: Diffuser:
Decreasing Constant Increasing pressure
pressure pressure and area
and area and area
Increasing Velocity Decreasing velocity
velocity constant
Favorable Zero Adverse gradient
gradient gradient (boundary layer thickens)
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Laminar Integral Theory

does the throat flow where the pressure gradient is approximately zero. But the ex-
panding-area diffuser produces low velocity and increasing pressure, an adverse gra-
dient. If the diffuser angle is too large, the adverse gradient is excessive, and the bound-
ary layer will separate at one or both walls, with backflow, increased losses, and poor
pressure recovery. In the diffuser literature [10] this condition is called diffuser stall, a
term used also in airfoil aerodynamics (Sec. 7.6) to denote airfoil boundary-layer sep-
aration. Thus the boundary-layer behavior explains why a large-angle diffuser has heavy
flow losses (Fig. 6.23) and poor performance (Fig. 6.28).

Presently boundary-layer theory can compute only up to the separation point, after
which it is invalid. New techniques are now developed for analyzing the strong inter-
action effects caused by separated flows [5, 6].

Both laminar and turbulent theories can be developed from Kédrman’s general two-
dimensional boundary-layer integral relation [7], which extends Eq. (7.33) to variable
Ux)

Ty 1 do 0 dU

— L= LAY 751
P T YT PO (75D

where 6(x) is the momentum thickness and H(x) = 6*(x)/6(x) is the shape factor. From
Eq. (7.17) negative dU/dx is equivalent to positive dp/dx, that is, an adverse gradient.

We can integrate Eq. (7.51) to determine 6(x) for a given U(x) if we correlate ¢, and
H with the momentum thickness. This has been done by examining typical velocity
profiles of laminar and turbulent boundary-layer flows for various pressure gradients.
Some examples are given in Fig. 7.9, showing that the shape factor H is a good indi-
cator of the pressure gradient. The higher the H, the stronger the adverse gradient, and
separation occurs approximately at

H~ {3.5 laminar flow (7.52)

2.4 turbulent flow

The laminar profiles (Fig. 7.9a) clearly exhibit the S shape and a point of inflection
with an adverse gradient. But in the turbulent profiles (Fig. 7.95) the points of inflec-
tion are typically buried deep within the thin viscous sublayer, which can hardly be
seen on the scale of the figure.

There are scores of turbulent theories in the literature, but they are all complicated al-
gebraically and will be omitted here. The reader is referred to advanced texts [1, 2, 9].

For laminar flow, a simple and effective method was developed by Thwaites [11],
who found that Eq. (7.51) can be correlated by a single dimensionless momentum-
thickness variable A, defined as

_%au

A
v dx

(7.53)

Using a straight-line fit to his correlation, Thwaites was able to integrate Eq. (7.51) in
closed form, with the result

2 U() 6 0.45v [* 5
= —) .54
& 00( ) fo U° dx (7.54)
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Fig. 7.9 Velocity profiles with pressure gradient: (a) laminar flow; (b) turbulent flow with adverse gradients.

where 6, is the momentum thickness at x = 0 (usually taken to be zero). Separation
(cy = 0) was found to occur at a particular value of A

Separation: A= —0.09 (7.55)

Finally, Thwaites correlated values of the dimensionless shear stress S = 7,,0/(uU) with
A, and his graphed result can be curve-fitted as follows:

s =22 < o+ 0000 (7.56)
unU
This parameter is related to the skin friction by the identity
S = j¢rRey (7.57)

Equations (7.54) to (7.56) constitute a complete theory for the laminar boundary layer
with variable U(x), with an accuracy of 10 percent compared with exact digital-com-
puter solutions of the laminar-boundary-layer equations (7.19). Complete details of
Thwaites’ and other laminar theories are given in Refs. 2 and 3.

As a demonstration of Thwaites’ method, take a flat plate, where U = constant, A =
0, and 6, = 0. Equation (7.54) integrates to

_ 0.45vx
U

02
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Part (a)

0 0.671
or ; = W (7.58)
This is within 1 percent of Blasius’ exact solution, Eq. (7.30).
With A = 0, Eq. (7.56) predicts the flat-plate shear to be
7,,0

= (0.09)%9% = 0.225
M

_ 27, _ 0671 (7.59)

or Cr= ——>
f pU2 Re,lc/z

This is also within 1 percent of the Blasius result, Eq. (7.25). However, the general ac-
curacy of this method is poorer than 1 percent because Thwaites actually “tuned” his
correlation constants to make them agree with exact flat-plate theory.

We shall not compute any more boundary-layer details here, but as we go along,
investigating various immersed-body flows, especially in Chap. 8, we shall
use Thwaites’ method to make qualitative assessments of the boundary-layer be-
havior.

EXAMPLE 7.5

In 1938 Howarth proposed a linearly decelerating external-velocity distribution

X
U = Uo(l -7) M
as a theoretical model for laminar-boundary-layer study. (a) Use Thwaites’ method to compute
the separation point Xy, for 6y = 0, and compare with the exact digital-computer solution
Xsep/L = 0.119863 given by H. Wipperman in 1966. (b) Also compute the value of ¢, = 27,/(pU?)
at x/L =0.1.

Solution
First note that dU/dx = —Uy/L = constant: Velocity decreases, pressure increases, and the pres-
sure gradient is adverse throughout. Now integrate Eq. (7.54)
0.45v x\d vL x\~©
02=7fx Up[l — =] dx=0075—|(1-=) -1 2
Ul —xL)® Jp O L Us L @
Then the dimensionless factor A is given by
¢ au U, -6
A= — 5= 20— o75|(1 -2 -1 3)
v dx vL L

From Eq. (7.55) we set this equal to —0.09 for separation
Xsep —6
Agep = —0.09 = —0.075[(1 - T) - 1]

Xsep

or =1-022)""=0.123 Ans. (a)
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This is less than 3 percent higher than Wipperman’s exact solution, and the computational ef-
fort is very modest.

To compute cyat x/L = 0.1 (just before separation), we first compute A at this point, using Eq. (3)
AMx =0.1L) = —0.075[(1 — 0.1) ® — 1] = —0.0661
Then from Eq. (7.56) the shear parameter is
S(x = 0.1L) = (—0.0661 + 0.09)** = 0.099 = jc; Re, )
We can compute Rey in terms of Re; from Eq. (2) or (3)

& _ 0.0661 _ 0.0661
> ULl Re,

or Re, = 0257 Rel?  at % =0.1

Substitute into Eq. (4):
0.099 = 5¢4(0.257 Re;?

0.77 UL
or = W Re; = 7 Ans. (b)

We cannot actually compute ¢, without the value of, say, UyL/v.

Boundary-layer theory is very interesting and illuminating and gives us a great quali-
tative grasp of viscous-flow behavior, but, because of flow separation, the theory does
not generally allow a quantitative computation of the complete flow field. In particu-
lar, there is at present no satisfactory theory for the forces on an arbitrary body im-
mersed in a stream flowing at an arbitrary Reynolds number. Therefore experimenta-
tion is the key to treating external flows.

Literally thousands of papers in the literature report experimental data on specific
external viscous flows. This section gives a brief description of the following external-
flow problems:

1. Drag of two-and three-dimensional bodies
a. Blunt bodies
b. Streamlined shapes
2. Performance of lifting bodies
a. Airfoils and aircraft
b. Projectiles and finned bodies
c. Birds and insects

For further reading see the goldmine of data compiled in Hoerner [12]. In later chap-
ters we shall study data on supersonic airfoils (Chap. 9), open-channel friction (Chap.
10), and turbomachinery performance (Chap. 11).
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Drag of Immersed Bodies

Fig. 7.10 Definition of forces and
moments on a body immersed in a
uniform flow.

Any body of any shape when immersed in a fluid stream will experience forces and
moments from the flow. If the body has arbitrary shape and orientation, the flow will
exert forces and moments about all three coordinate axes, as shown in Fig. 7.10. It is
customary to choose one axis parallel to the free stream and positive downstream. The
force on the body along this axis is called drag, and the moment about that axis the
rolling moment. The drag is essentially a flow loss and must be overcome if the body
is to move against the stream.

A second and very important force is perpendicular to the drag and usually performs
a useful job, such as bearing the weight of the body. It is called the /ift. The moment
about the lift axis is called yaw.

The third component, neither a loss nor a gain, is the side force, and about this axis
is the pitching moment. To deal with this three-dimensional force-moment situation is
more properly the role of a textbook on aerodynamics [for example, 13]. We shall limit
the discussion here to lift and drag.

When the body has symmetry about the lift-drag axis, e.g., airplanes, ships, and cars
moving directly into a stream, the side force, yaw, and roll vanish, and the problem re-
duces to a two-dimensional case: two forces, lift and drag, and one moment, pitch.

A final simplification often occurs when the body has two planes of symmetry, as
in Fig. 7.11. A wide variety of shapes such as cylinders, wings, and all bodies of rev-
olution satisfy this requirement. If the free stream is parallel to the intersection of these
two planes, called the principal chord line of the body, the body experiences drag only,
with no lift, side force, or moments.* This type of degenerate one-force drag data is
what is most commonly reported in the literature, but if the free stream is not parallel
to the chord line, the body will have an unsymmetric orientation and all three forces
and three moments can arise in principle.

In low-speed flow past geometrically similar bodies with identical orientation and
relative roughness, the drag coefficient should be a function of the body Reynolds num-
ber

Cp = f(Re) (7.60)

Lift force

Yawing

Q—D moment

Drag force

Arbitrary

body Rolling moment

Pitching moment

P

Freestream
velocity Side force

“In bodies with shed vortices, such as the cylinder in Fig. 5.2, there may be oscillating lift, side force,
and moments, but their mean value is zero.



Fig. 7.11 Only the drag force oc-
curs if the flow is parallel to both
planes of symmetry.
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The Reynolds number is based upon the free-stream velocity V and a characteristic
length L of the body, usually the chord or body length parallel to the stream

_VL
14

Re (7.61)

For cylinders, spheres, and disks, the characteristic length is the diameter D.

Drag coefficients are defined by using a characteristic area A which may differ de-
pending upon the body shape:

. drag
l p VA

Cp = (7.62)
The factor 5 is our traditional tribute to Euler and Bernoulli. The area A is usually one
of three types:

1. Frontal area, the body as seen from the stream; suitable for thick, stubby bodies,
such as spheres, cylinders, cars, missiles, projectiles, and torpedoes.

2. Planform area, the body area as seen from above; suitable for wide, flat bodies
such as wings and hydrofoils.

3. Wetted area, customary for surface ships and barges.

In using drag or other fluid-force data, it is important to note what length and area are
being used to scale the measured coefficients.

As we have mentioned, the theory of drag is weak and inadequate, except for the flat
plate. This is because of flow separation. Boundary-layer theory can predict the sepa-
ration point but cannot accurately estimate the (usually low) pressure distribution in
the separated region. The difference between the high pressure in the front stagnation
region and the low pressure in the rear separated region causes a large drag contribu-
tion called pressure drag. This is added to the integrated shear stress or friction drag
of the body, which it often exceeds:

CD = CD,press + CD,fric (763)
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Fig. 7.12 Drag of a streamlined
two-dimensional cylinder at Re,. =
10 (a) effect of thickness ratio on
percentage of friction drag; (b) total
drag versus thickness when based
upon two different areas.

The relative contribution of friction and pressure drag depends upon the body’s shape,
especially its thickness. Figure 7.12 shows drag data for a streamlined cylinder of very
large depth into the paper. At zero thickness the body is a flat plate and exhibits 100
percent friction drag. At thickness equal to the chord length, simulating a circular cylin-
der, the friction drag is only about 3 percent. Friction and pressure drag are about equal
at thickness #/c = 0.25. Note that Cp, in Fig. 7.12b looks quite different when based
upon frontal area instead of planform area, planform being the usual choice for this
body shape. The two curves in Fig. 7.12b represent exactly the same drag data.

Figure 7.13 illustrates the dramatic effect of separated flow and the subsequent fail-
ure of boundary-layer theory. The theoretical inviscid pressure distribution on a circu-
lar cylinder (Chap. 8) is shown as the dashed line in Fig. 7.13c:

P~ DP=x .2
C, Vo 1 —4sin” 6 (7.64)
where p.. and V are the pressure and velocity, respectively, in the free stream. The ac-
tual laminar and turbulent boundary-layer pressure distributions in Fig. 7.13c are star-
tlingly different from those predicted by theory. Laminar flow is very vulnerable to the
adverse gradient on the rear of the cylinder, and separation occurs at § = 82°, which
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Fig. 7.13 Flow past a circular
cylinder: (a) laminar separation; (b)
turbulent separation; (c¢) theoretical
and actual surface-pressure distri-
butions.

wn
W

7.6 Experimental External Flows 4

Separation

Separation

00— Inviscid
' \ theory
\ /Cp=1—4sin2€
\
30 I N S I
0° 45° 90° 135° 180°
0

()

certainly could not have been predicted from inviscid theory. The broad wake and very
low pressure in the separated laminar region cause the large drag Cp = 1.2.

The turbulent boundary layer in Fig. 7.13b is more resistant, and separation is de-
layed until # = 120°, with a resulting smaller wake, higher pressure on the rear, and
75 percent less drag, Cp = 0.3. This explains the sharp drop in drag at transition in
Fig. 5.3.

The same sharp difference between vulnerable laminar separation and resistant tur-
bulent separation can be seen for a sphere in Fig. 7.14. The laminar flow (Fig. 7.14a)
separates at about 80°, Cp = 0.5, while the turbulent flow (Fig. 7.14b) separates at
120°, Cp = 0.2. Here the Reynolds numbers are exactly the same, and the turbulent
boundary layer is induced by a patch of sand roughness at the nose of the ball. Golf
balls fly in this range of Reynolds numbers, which is why they are deliberately dim-
pled — to induce a turbulent boundary layer and lower drag. Again we would find the
actual pressure distribution on the sphere to be quite different from that predicted by
inviscid theory.
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Fig. 7.14 Strong differences in lam-
inar and turbulent separation on an
8.5-in bowling ball entering water
at 25 ft/s: (a) smooth ball, laminar
boundary layer; (b) same entry, tur-
bulent flow induced by patch of
nose-sand roughness. (U.S. Navy
photograph, Ordnance Test Station,
Pasadena Annex.)

Fig. 7.15 The importance of
streamlining in reducing drag of a
body (Cp based on frontal area):
(a) rectangular cylinder; (b)
rounded nose; (c¢) rounded nose and
streamlined sharp trailing edge; (d)
circular cylinder with the same
drag as case (c).

(a) )

In general, we cannot overstress the importance of body streamlining to reduce
drag at Reynolds numbers above about 100. This is illustrated in Fig. 7.15. The rec-
tangular cylinder (Fig. 7.15a) has rampant separation at all sharp corners and very
high drag. Rounding its nose (Fig. 7.15b) reduces drag by about 45 percent, but Cp
is still high. Streamlining its rear to a sharp trailing edge (Fig. 7.15¢) reduces its drag
another 85 percent to a practical minimum for the given thickness. As a dramatic con-
trast, the circular cylinder (Fig. 7.15d) has one-eighth the thickness and one-three-
hundredth the cross section (c¢) (Fig. 7.15¢), yet it has the same drag. For high-per-
formance vehicles and other moving bodies, the name of the game is drag reduction,
for which intense research continues for both aerodynamic and hydrodynamic appli-
cations [20, 39].

The drag of some representative wide-span (nearly two-dimensional) bodies is shown
versus the Reynolds number in Fig. 7.16a. All bodies have high Cp, at very low (creep-
ing flow) Re = 1.0, while they spread apart at high Reynolds numbers according to

/O

/—B/_b - —~
Ve 0 Cp=20 V— \_QCD=1.1
J \_p
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o
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Ve \D qcho.ls V—= 25 02 o
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their degree of streamlining. All values of Cp are based on the planform area except
the plate normal to the flow. The birds and the sailplane are, of course, not very two-
dimensional, having only modest span length. Note that birds are not nearly as effi-
cient as modern sailplanes or airfoils [14, 15].

Table 7.2 gives a few data on drag, based on frontal area, of two-dimensional bod-
ies of various cross section, at Re = 10*. The sharp-edged bodies, which tend to cause
flow separation regardless of the character of the boundary layer, are insensitive to the
Reynolds number. The elliptic cylinders, being smoothly rounded, have the laminar-
to-turbulent transition effect of Figs. 7.13 and 7.14 and are therefore quite sensitive to
whether the boundary layer is laminar or turbulent.

100 | |
Smooth Plate
cir'cular Square normal
10 N cylinder cylinder to stream
L = oo —— © —»I/o
\D =5 * °
1 \ \ j -
Cp \ T > L/
Pig¢on
0.1 Smooth Seagull \\ gV n
flat plate Sailplane \,\< e
parallel \/ Airfoil
to stream \
0.01 t \y =
Transition
0.001 |
0.1 1 10 100 103 104 10° 108 107
Re
(@)
100 \
10 \\
Stokes'
taw: AN
o 24/Re — - = -
\\/ Sphere
T - / /—
2:1 \ g R
. 0.1 ellipsoid A
Fig. 7.16 Drag coefficients of
smooth bodies at low Mach num- Airship hull
bers: (a) two-dimensional bodies; 0.01
(b) three-dimensional bodies. Note 0.1 1 10 100 103 104 10° 106 107
the Reynolds-number independence Re

of blunt bodies at high Re. (b)
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Table 7.2 Drag of Two-

Dimensional Bodies at Re = 10* Cp based Cp based Cp based
on frontal on frontal on frontal
Shape area Shape area Shape area
Square cylinder: Half-cylinder: Plate:
—_— 2.1 e 1.2 e H 2.0
Thin plate
—_— 1.6 e D 1.7 normal to
a wall:
Half tube: Equilateral triangle: > 1.4

- > C 12 —_— <] 1.6
Hexagon:
—_— > 23 — |> 2.0 — <:> —1.0 T0.7

Shape Cp based on frontal area
Rounded nose section: i

R . vr: | o5 | 10 | 20 | 40 | 60
Cp: | 116 | 090 | 070 | 068 | 0.64

L
Flat nose section
wi: | o1 | o4 | 07 | 12| 20| 25| 30| 60
> H Cp: | 19 | 23 | 27 | 21 | 18 | 14 | 13 | 09
L
Elliptical cylinder: Laminar Turbulent

1 — @ 1.2 03
21— O 0.6 0.2

41— > 0.35 0.15

gl—>» — —— 0.25 0.1
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A square 6-in piling is acted on by a water flow of 5 ft/s that is 20 ft deep, as shown in Fig.

E7.6. Estimate the maximum bending exerted by the flow on the bottom of the piling.

~ h=6in
v - v

5 ft/s

L=20ft

E7.6 T

Solution

ing width of 0.5 ft, we have

Assume seawater with p = 1.99 slugs/ft® and kinematic viscosity » = 0.000011 ft*/s. With a pil-

(5 1Us)(0.5 f)
€y = =

2.3 % 10°
0.000011 ft/s

This is the range where Table 7.2 applies. The worst case occurs when the flow strikes the flat
estimated by

side of the piling, Cp =~ 2.1. The frontal area is A = Lh = (20 ft)(0.5 ft) = 10 ft>. The drag is

F = Cp(EpV*A) = 2.1(3)(1.99 slugs/ft})(5 ft/s)*(10 ft?) = 522 Ibf
the bottom bending moment is

If the flow is uniform, the center of this force should be at approximately middepth. Therefore

ay = FL

= 522(10) = 5220 ft - Ibf
would be

S =

Ans
According to the flexure formula from strength of materials, the bending stress at the bottom
I

Mgy _ (5220 ft - 1b)(0.25 ft)

05 fo° = 251,000 Ibf/ft> = 1740 1bf/in?
12 N

to be multiplied, of course, by the stress-concentration factor due to the built-in end conditions.

Some drag coefficients of three-dimensional bodies are listed in Table 7.3 and Fig.
7.16b. Again we can conclude that sharp edges always cause flow separation and high

drag which is insensitive to the Reynolds number. Rounded bodies like the ellipsoid
have drag which depends upon the point of separation, so that both the Reynolds num-
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Table 7.3 Drag of Three-Dimensional Bodies at Re = 10*

Cp based on

Body frontal area Body Cp based on frontal area
Cube: Cone:
NG 1.07 4 0 10° | 20° | 30° | 40° | 60° | 75° | 90°
() Cp: | 030 | 0.40 | 0.55 ] 0.65 | 0.80 | 1.05 | 1.15
— 081 Short cylinder,
laminar flow:
. LiD: | 1 2 3 5 100 |20 |40 |
Cp: | 0.64) 0.68 | 0.72 | 0.74 | 0.82 | 0.91 O.98|1.20
Cup: D
E— > L4 Porous parabolic
dish [23]; Porosity: |0 |01 |02 |03 |04 |os
04 E— —~—Cp | 142|133 | 1.20 | 1.05 | 0.95 | 0.82
> ’ — Cp: | 095 ] 0.92 | 090 | 0.86 | 0.83 | 0.80
Average person:
Disk:
> H 1.17 - —= CpA=9ft TcDAszﬁ2
f]f)acmz)t:osit ) Pine and spruce
w :
P! y@ - trees [24]: vws: | 10 | 20 | 30 | 40
: E—

Cp | 12402 |1.0+02 |07+02 |05+02

Cp based on

Cp based on

Body Ratio frontal area Body Ratio frontal area
Rectangular plate: Flat-faced cylinder:
— || A b/h 1 1.18 E— D Lid 05 1.15
b 5 1.2 1 0.90
10 1.3 2 0.85
h 20 1.5 4 0.87
oo 2.0 8 0.99
o Laminar Turbulent
Ellipsoid: -
L/d 0.75 0.5 0.2
d 1 0.47 0.2
| - 2 0.27 0.13
L 4 0.25 0.1
8 0.2 0.08




Aerodynamic Forces on Road
Vehicles

Fig. 7.17 Aerodynamics of automo-
biles: (a) the historical trend for
drag coefficients [From Ref. 21];
(b) effect of bottom rear upsweep
angle on drag and downward lift
force [From Ref. 25].
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ber and the character of the boundary layer are important. Body length will generally de-
crease pressure drag by making the body relatively more slender, but sooner or later the
friction drag will catch up. For the flat-faced cylinder in Table 7.3, pressure drag decreases
with L/d but friction increases, so that minimum drag occurs at about L/d = 2.

Automobiles and trucks are now the subject of much research on aerodynamic forces,
both lift and drag [21]. At least one textbook is devoted to the subject [22]. Consumer,
manufacturer, and government interest has cycled between high speed/high horsepower
and lower speed/lower drag. Better streamlining of car shapes has resulted over the
years in a large decrease in the automobile drag coefficient, as shown in Fig. 7.17a.
Modern cars have an average drag coefficient of about 0.35, based upon the frontal
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Fig. 7.18 Drag reduction of a trac-
tor-trailer truck: (a) horsepower re-
quired to overcome resistance; (b)
deflector added to cab reduces air
drag by 20 percent. (Uniroyal Inc.)

area. Since the frontal area has also decreased sharply, the actual raw drag force on
cars has dropped even more than indicated in Fig. 7.17a. The practical minimum, shown
tentatively for the year 2000, is Cp = 0.15 for a tear-shaped vehicle, which can be
achieved any time the public is willing to purchase such a shape. Note that basing Cp,
on the frontal area is awkward, since one would need an accurate drawing of the au-
tomobile to estimate its frontal area. For this reason, some technical articles simply re-
port the raw drag in newtons or pound-force, or the product CpA.

Many companies and laboratories have automotive wind tunnels, some full-scale
and/or with moving floors to approximate actual kinematic similarity. The blunt shapes
of most automobiles, together with their proximity to the ground, cause a wide vari-
ety of flow and geometric effects. Simple changes in part of the shape can have a large
influence on aerodynamic forces. Figure 7.17b shows force data by Bearman et al. [25]
for an idealized smooth automobile shape with upsweep in the rear of the bottom sec-
tion. We see that by simply adding an upsweep angle of 25°, we can quadruple the
downward force, gaining tire traction at the expense of doubling the drag. For this
study, the effect of a moving floor was small—about a 10 percent increase in both drag
and lift compared to a fixed floor.

It is difficult to quantify the exact effect of geometric changes on automotive forces,
since, e.g., changes in a windshield shape might interact with downstream flow over
the roof and trunk. Nevertheless, based on correlation of many model and full-scale
tests, Ref. 26 proposes a formula for automobile drag which adds separate effects such
as front ends, cowls, fenders, windshield, roofs, and rear ends.

Figure 7.18 shows the horsepower required to drive a typical tractor-trailer truck
at speeds up to 80 mi/h (117 ft/s or 36 m/s). The rolling resistance increases linearly
and the air drag quadratically with speed (Cp = 1.0). The two are about equally im-
portant at 55 mi/h, which is the nominal speed limit in the United States. As shown
in Fig. 7.18b, air drag can be reduced by attaching a deflector to the top of the trac-
tor. If the angle of the deflector is adjusted to carry the flow smoothly over the top
and around the sides of the trailer, the reduction in Cp, is about 20 percent. Thus, at
55 mi/h the total resistance is reduced 10 percent, with a corresponding reduction in

550 —
500 —
450 — Gross engine horsepower required
400 —
350 —
300 —
250 —
200 —
150 —
100 —

50 —

0
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fuel costs and/or trip time for the trucker. This type of applied fluids engineering can
be a large factor in many of the conservation-oriented transportation problems of the
future.

EXAMPLE 7.7

A high-speed car with m = 2000 kg, Cp = 0.3, and A = 1 m* deploys a 2-m parachute to slow
down from an initial velocity of 100 m/s (Fig. E7.7). Assuming constant Cp, brakes free, and
no rolling resistance, calculate the distance and velocity of the car after 1, 10, 100, and 1000 s.
For air assume p = 1.2 kg/m>, and neglect interference between the wake of the car and the para-
chute.

dp=2m V= 100 m/s

Solution

Newton’s law applied in the direction of motion gives

dav 1
Fe=m=—r=—F.—F,= pV(CpAc + CppA,)

where subscript ¢ denotes the car and subscript p the parachute. This is of the form

dav K » p
—=-—V K=)> CphA =
dt m 2. o 2
Separate the variables and integrate
\4 t
[
Vo \% m Jo
or vl-vi =K,
m
Rearrange and solve for the velocity V:
(CpeA. + CpyAL)p
=0 g2 L ()
1 + (KIm)Vyt 2
We can integrate this to find the distance traveled:
S=ﬁln(l+at) a=£V0 2)
a m

Now work out some numbers. From Table 7.3, Cp, = 1.2; hence

CpeAe + CppA, = 0.3(1 m?) + 1.2 % (2 m)® = 4.07 m*
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Other Methods of Drag Reduction

Drag of Surface Ships

K 1(4.07 m*)(1.2 kg/m*)(100 m/s)
Then =V = =012s'=a
m 2000 kg

Now make a table of the results for V and S from Egs. (1) and (2):

t,s 1 10 100 1000
V, m/s 89 45 7.6 0.8
S, m 94 654 2110 3940

Air resistance alone will not stop a body completely. If you don’t apply the brakes, you’ll be
halfway to the Yukon Territory and still going.

Sometimes drag is good, for example, when using a parachute. Do not jump out of an
airplane holding a flat plate parallel to your motion (see Prob. 7.81). Mostly, though,
drag is bad and should be reduced. The classical method of drag reduction is stream-
lining (Figs. 7.15 and 7.18). For example, nose fairings and body panels have produced
motorcycles which can travel over 200 mi/h. More recent research has uncovered other
methods which hold great promise, especially for turbulent flows.

1. Oil pipelines introduce an annular core of water to reduce the pumping power
[36]. The low-viscosity water rides the wall and reduces friction up to 60 per-
cent.

2. Turbulent friction in liquid flows is reduced up to 60 percent by dissolving small
amounts of a high-molecular-weight polymer additive [37]. Without changing
pumps, the Trans-Alaska Pipeline System (TAPS) increased oil flow 50 percent
by injecting small amounts of polymer dissolved in kerosene.

3. Stream-oriented surface vee-groove microriblets reduce turbulent friction up to 8
percent [38]. Riblet heights are of order 1 mm and were used on the Stars and
Stripes yacht hull in the Americas Cup races. Riblets are also effective on air-
craft skins.

4. Small, near-wall large-eddy breakup devices (LEBUs) reduce local turbulent
friction up to 10 percent [39]. However, one must add these small structures to
the surface.

5. Air microbubbles injected at the wall of a water flow create a low-shear bubble
blanket [40]. At high void fractions, drag reduction can be 80 percent.

6. Spanwise (transverse) wall oscillation may reduce turbulent friction up to 30
percent [41].

Drag reduction is presently an area of intense and fruitful research and applies to many
types of airflows and water flows for both vehicles and conduits.

The drag data above, such as Tables 7.2 and 7.3, are for bodies “fully immersed” in a
free stream, i.e., with no free surface. If, however, the body moves at or near a free liq-
uid surface, wave-making drag becomes important and is dependent upon both the
Reynolds number and the Froude number. To move through a water surface, a ship
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must create waves on both sides. This implies putting energy into the water surface
and requires a finite drag force to keep the ship moving, even in a frictionless fluid.
The total drag of a ship can then be approximated as the sum of friction drag and wave-
making drag:

F = Ffric + Fwave or CD =~ CD,fric + CD,wave

The friction drag can be estimated by the (turbulent) flat-plate formula, Eq. (7.45),
based on the below-water or wetted area of the ship.

Reference 27 is an interesting review of both theory and experiment for wake-
making surface ship drag. Generally speaking, the bow of the ship creates a wave sys-
tem whose wavelength is related to the ship speed but not necessarily to the ship length.
If the stern of the ship is a wave trough, the ship is essentially climbing uphill and has
high wave drag. If the stern is a wave crest, the ship is nearly level and has lower drag.
The criterion for these two conditions results in certain approximate Froude numbers
[27]:

Vv 0.53 highdragif N=1,3,5,7,...;

Fr=
VL VN oy dragif N=2, 4,6, 8, . ..

(7.65)

where V is the ship’s speed, L is the ship’s length along the centerline, and N is the
number of half-lengths, from bow to stern, of the drag-making wave system. The wave
drag will increase with the Froude number and oscillate between lower drag (Fr =
0.38, 0.27, 0.22, . . .) and higher drag (Fr = 0.53, 0.31, 0.24, . . .) with negligible vari-
ation for Fr < 0.2. Thus it is best to design a ship to cruise at N = 2, 4, 6, 8. Shaping
the bow and stern can further reduce wave-making drag.

Figure 7.19 shows the data of Inui [27] for a model ship. The main hull, curve A,
shows peaks and valleys in wave drag at the appropriate Froude numbers > 0.2. In-
troduction of a bulb protrusion on the bow, curve B, greatly reduces the drag. Adding
a second bulb to the stern, curve C, is still better, and Inui recommends that the design
speed of this two-bulb ship be at N = 4, Fr = 0.27, which is a nearly “waveless” con-
dition. In this figure Cp yaye is defined as 2F yavel (pV2L?) instead of using the wetted
area.

The solid curves in Fig. 7.19 are based on potential-flow theory for the below-
water hull shape. Chapter 8 is an introduction to potential-flow theory. Modern digital
computers can be programmed for numerical CFD solutions of potential flow over the
hulls of ships, submarines, yachts, and sailboats, including boundary-layer effects
driven by the potential flow [28]. Thus theoretical prediction of flow past surface ships
is now at a fairly high level. See also Ref. 15.

All the data presented above are for nearly incompressible flows, with Mach numbers
assumed less than about 0.5. Beyond this value compressibility can be very important,
with Cp = fcn(Re, Ma). As the stream Mach number increases, at some subsonic value
M. < 1 which depends upon the body’s bluntness and thickness, the local velocity at
some point near the body surface will become sonic. If Ma increases beyond Ma,;,
shock waves form, intensify, and spread, raising surface pressures near the front of the
body and therefore increasing the pressure drag. The effect can be dramatic with Cp
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Fig. 7.19 Wave-making drag on a
ship model. (After Inui [27].) Note:
The drag coeftficient is defined as
Cpw = 2F/(pV2L?).

O A Main hull (without bulb)
® B With bow-bulb
A C With bow and stern-bulbs

0.002 —

Potential-flow theory

CD, wave

0.001

1 A A I
0.10 0.20 T 0.30 0.40 0.50 0.60

; Fr= v
Design @

increasing tenfold, and 70 years ago this sharp increase was called the sonic barrier,
implying that it could not be surmounted. Of course, it can be—the rise in Cp, is fi-
nite, as supersonic bullets have proved for centuries.

Figure 7.20 shows the effect of the Mach number on the drag coefficient of various
body shapes tested in air.” We see that compressibility affects blunt bodies earlier, with
Ma,; equal to 0.4 for cylinders, 0.6 for spheres, and 0.7 for airfoils and pointed pro-
jectiles. Also the Reynolds number (laminar versus turbulent boundary-layer flow) has
a large effect below Ma,; for spheres and cylinders but becomes unimportant above
Ma = 1. In contrast, the effect of the Reynolds number is small for airfoils and pro-
jectiles and is not shown in Fig. 7.20. A general statement might divide Reynolds- and
Mach-number effects as follows:

Ma = 0.4: Reynolds number important, Mach number unimportant
0.4 <Ma < 1: both Reynolds and Mach numbers important
Ma > 1.0: Reynolds number unimportant, Mach number important

At supersonic speeds, a broad bow shock wave forms in front of the body (see Figs.
9.10b and 9.19), and the drag is mainly due to high shock-induced pressures on the
front. Making the bow a sharp point can sharply reduce the drag (Fig. 9.28) but does
not eliminate the bow shock. Chapter 9 gives a brief treatment of compressibility.
References 30 and 31 are more advanced textbooks devoted entirely to compressible
flow.

SThere is a slight effect of the specific-heat ratio k which would appear if other gases were tested.



Biological Drag Reduction

Forces on Lifting Bodies

Fig. 7.20 Effect of the Mach num-
ber on the drag of various body
shapes. (Data from Refs. 23 and
29.)
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A great deal of engineering effort goes into designing immersed bodies to reduce their
drag. Most such effort concentrates on rigid-body shapes. A different process occurs
in nature, as organisms adapt to survive high winds or currents, as reported in a series
of papers by S. Vogel [33, 34]. A good example is a tree, whose flexible structure al-
lows it to reconfigure in high winds and thus reduce drag and damage. Tree root sys-
tems have evolved in several ways to resist wind-induced bending moments, and trunk
cross sections have become resistant to bending but relatively easy to twist and recon-
figure. We saw this in Table 7.3, where tree drag coefficients [24] reduced by 60 per-
cent as wind velocity increased. The shape of the tree changes to offer less resistance.

The individual branches and leaves of a tree also curl and cluster to reduce drag.
Figure 7.21 shows the results of wind tunnel experiments by Vogel [33]. A tulip tree
leaf, Fig. 7.21(a), broad and open in low wind, curls into a conical low-drag shape as
wind increases. A compound black walnut leaf group, Fig. 7.21(b), clusters into a low-
drag shape at high wind speed. Although drag coefficients were reduced up to 50 per-
cent by flexibility, Vogel points out that rigid structures are sometimes just as effec-
tive. An interesting recent symposium [35] was devoted entirely to the solid mechanics
and fluid mechanics of biological organisms.

Lifting bodies (airfoils, hydrofoils, or vanes) are intended to provide a large force nor-
mal to the free stream and as little drag as possible. Conventional design practice has
evolved a shape not unlike a bird’s wing, i.e., relatively thin (#/c = 0/18) with a rounded
leading edge and a sharp trailing edge. A typical shape is sketched in Fig. 7.22.

For our purposes we consider the body to be symmetric, as in Fig. 7.11, with the

Cylinder in cross flow:
Laminar, Re = 1 E5
Turbulent, Re = 1 E6

Cp 1.0 —

Sphere
Laminar, Re = 1 E5
Turbulent, Re = 1 E6

Pointed body
of revolution

0.8 —

0.6 —

Airfoil
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5 m/s
5 m/s

10 m/s 10 m/s

Fig. 7.21 Biological adaptation to 20 m/s

wind forces: (a) a tulip tree leaf

curls into a conical shape at high

velocity; (b) black walnut leaves

cluster into a low-drag shape as

wind increases. (From Vogel, Ref.

33.) (a) (b)

20 m/s

free-stream velocity in the vertical plane. If the chord line between the leading and
trailing edge is not a line of symmetry, the airfoil is said to be cambered. The camber
line is the line midway between the upper and lower surfaces of the vane.

The angle between the free stream and the chord line is called the angle of attack
a. The lift L and the drag D vary with this angle. The dimensionless forces are defined
with respect to the planform area A, = bc:

L
Lift coefficient: C, = . (7.66a)
PVA,
- . D
Drag coefficient: Cp= - (7.66b)
lpV’A/,
Planform

area = bc

Angle of
attack

Fig. 7.22 Definition sketch for a €= chorq \./
lifting vane.



Fig. 7.23 Transient stages in the
development of lift: (a) start-up:
rear stagnation point on the upper
surface: no lift; (b) sharp trailing
edge induces separation, and a
starting vortex forms: slight lift; (c)
starting vortex is shed, and stream-
lines flow smoothly from trailing
edge: lift is now 80 percent devel-
oped; (d) starting vortex now shed
far behind, trailing edge now very
smooth: lift fully developed.
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If the chord length is not constant, as in the tapered wings of modern aircraft,
A, = [c db.

For low-speed flow with a given roughness ratio, C; and Cp, should vary with a and
the chord Reynolds number

C; = fla, Re,) or Cp = fla, Re,)

where Re. = Vc/v. The Reynolds numbers are commonly in the turbulent-boundary-
layer range and have a modest effect.

The rounded leading edge prevents flow separation there, but the sharp trailing edge
causes a separation which generates the lift. Figure 7.23 shows what happens when a
flow starts up past a lifting vane or an airfoil.

Just after start-up in Fig. 7.23a the streamline motion is irrotational and inviscid.
The rear stagnation point, assuming a positive angle of attack, is on the upper surface,
and there is no lift; but the flow cannot long negotiate the sharp turn at the trailing
edge: it separates, and a starting vortex forms in Fig. 7.23b. This starting vortex is shed
downstream in Fig. 7.23¢ and d, and a smooth streamline flow develops over the wing,
leaving the foil in a direction approximately parallel to the chord line. Lift at this time
is fully developed, and the starting vortex is gone. Should the flow now cease, a stop-
ping vortex of opposite (clockwise) sense will form and be shed. During flight, in-
creases or decreases in lift will cause incremental starting or stopping vortices, always
with the effect of maintaining a smooth parallel flow at the trailing edge. We pursue
this idea mathematically in Chap. 8.

At a low angle of attack, the rear surfaces have an adverse pressure gradient but not
enough to cause significant boundary-layer separation. The flow pattern is smooth, as
in Fig. 7.23d, and drag is small and lift excellent. As the angle of attack is increased,
the upper-surface adverse gradient becomes stronger, and generally a separation bub-

/f @
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Fig. 7.24 At high angle of attack,
smoke-flow visualization shows
stalled flow on the upper surface of
a lifting vane. [From Ref. 19, 1llus-
trated Experiments in Fluid Me-
chanics (The NCFMF Book of Film
Notes), National Committee for
Fluid Mechanics Films, Education
Development Center, Inc., copy-
right 1972.]

ble begins to creep forward on the upper surface.® At a certain angle a = 15 to 20°,
the flow is separated completely from the upper surface, as in Fig. 7.24. The airfoil is
said to be stalled: Lift drops off markedly, drag increases markedly, and the foil is no
longer flyable.

Early airfoils were thin, modeled after birds’ wings. The German engineer Otto
Lilienthal (1848—1896) experimented with flat and cambered plates on a rotating arm.
He and his brother Gustav flew the world’s first glider in 1891. Horatio Frederick
Phillips (1845—1912) built the first wind tunnel in 1884 and measured the lift and drag
of cambered vanes. The first theory of lift was proposed by Frederick W. Lanchester
shortly afterward. Modern airfoil theory dates from 1905, when the Russian hydrody-
namicist N. E. Joukowsky (1847-1921) developed a circulation theorem (Chap. 8) for
computing airfoil lift for arbitrary camber and thickness. With this basic theory, as ex-
tended and developed by Prandtl and Kdrman and their students, it is now possible to
design a low-speed airfoil to satisfy particular surface-pressure distributions and bound-
ary-layer characteristics. There are whole families of airfoil designs, notably those de-
veloped in the United States under the sponsorship of the NACA (now NASA). Ex-
tensive theory and data on these airfoils are contained in Ref. 16. We shall discuss this
further in Chap. 8.

Figure 7.25 shows the lift and drag on a symmetric airfoil denoted as the NACA
0009 foil, the last digit indicating the thickness of 9 percent. With no flap extended,

SFor some airfoils the bubble leaps, not creeps, forward, and stall occurs rapidly and dangerously.



Fig. 7.25 Lift and drag of a sym-
metric NACA 0009 airfoil of infi-
nite span, including effect of a
split-flap deflection. Note that
roughness can increase Cp from
100 to 300 percent.
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this airfoil, as expected, has zero lift at zero angle of attack. Up to about 12° the lift
coefficient increases linearly with a slope of 0.1 per degree, or 6.0 per radian. This is
in agreement with the theory outlined in Chap. 8:

Crioory = 277 sin(a + 2—Ch> (7.67)

where h/c is the maximum camber expressed as a fraction of the chord. The NACA
0009 has zero camber; hence C; = 27 sin a = 0.11«a, where « is in degrees. This is
excellent agreement.

The drag coefficient of the smooth-model airfoils in Fig. 7.25 is as low as 0.005,
which is actually lower than both sides of a flat plate in turbulent flow. This is mis-
leading inasmuch as a commercial foil will have roughness effects; e.g., a paint job
will double the drag coefficient.

The effect of increasing Reynolds number in Fig. 7.25 is to increase the maximum
lift and stall angle (without changing the slope appreciably) and to reduce the drag co-
efficient. This is a salutary effect, since the prototype will probably be at a higher
Reynolds number than the model (107 or more).

For takeoff and landing, the lift is greatly increased by deflecting a split flap, as
shown in Fig. 7.25. This makes the airfoil unsymmetric (or effectively cambered) and
changes the zero-lift point to & = —12°. The drag is also greatly increased by the flap,
but the reduction in takeoff and landing distance is worth the extra power needed.

A lifting craft cruises at low angle of attack, where the lift is much larger than the
drag. Maximum lift-to-drag ratios for the common airfoils lie between 20 and 50.

Some airfoils, such as the NACA 6 series, are shaped to provide favorable gradi-
ents over much of the upper surface at low angles. Thus separation is small, and tran-
sition to turbulence is delayed; the airfoil retains a good length of laminar flow even
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Fig. 7.26 Lift-drag polar plot for
standard (0009) and a laminar-flow
(63-009) NACA airfoil.
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at high Reynolds numbers. The lift-drag polar plot in Fig. 7.26 shows the NACA 0009
data from Fig. 7.25 and a laminar-flow airfoil, NACA 63-009, of the same thickness.
The laminar-flow airfoil has a low-drag bucket at small angles but also suffers lower
stall angle and lower maximum lift coefficient. The drag is 30 percent less in the bucket,
but the bucket disappears if there is significant surface roughness.

All the data in Figs. 7.25 and 7.26 are for infinite span, i.e., a two-dimensional flow
pattern about wings without tips. The effect of finite span can be correlated with the
dimensionless slenderness, or aspect ratio, denoted (AR),

_ b _b

A,

AR (7.68)

c
where c is the average chord length. Finite-span effects are shown in Fig. 7.27. The
lift slope decreases, but the zero-lift angle is the same; and the drag increases, but the
zero-lift drag is the same. The theory of finite-span airfoils [16] predicts that the ef-
fective angle of attack increases, as in Fig. 7.27, by the amount

C
Ao~ —=L 7.69
“ AR ( )
When applied to Eq. (7.67), the finite-span lift becomes
277 sin (a + 2h/c
c, ~2 sin (a + 2h/c) (7.70)
1 +2/AR
The associated drag increase is ACp = C; sin Aa = C; Aa, or
C2
Cp=~ Cpo + —=% (7.71)

7TAR



Fig. 7.27 Effect of finite aspect ra-
tio on lift and drag of an airfoil: (a)
effective angle increase; (b) in-
duced drag increase.
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where Cp.. is the drag of the infinite-span airfoil, as sketched in Fig. 7.25. These cor-
relations are in good agreement with experiments on finite-span wings [16].

The existence of a maximum lift coefficient implies the existence of a minimum
speed, or stall speed, for a craft whose lift supports its weight

L=W= CLmux(3pVIA))

172
or V, = (27“/) (7.72)
CL,maprp

The stall speed of typical aircraft varies between 60 and 200 ft/s, depending upon the
weight and value of Cy .. The pilot must hold the speed greater than about 1.2V, to
avoid the instability associated with complete stall.

The split flap in Fig. 7.25 is only one of many devices used to secure high lift at
low speeds. Figure 7.28a shows six such devices whose lift performance is given in
7.28b along with a standard (A) and laminar-flow (B) airfoil. The double-slotted flap
achieves C; max =~ 3.4, and a combination of this plus a leading-edge slat can achieve
Crmax = 4.0. These are not scientific curiosities; e.g., the Boeing 727 commercial jet
aircraft uses a triple-slotted flap plus a leading-edge slat during landing.

Also shown as C in Fig. 7.28b is the Kline-Fogleman airfoil [17], not yet a reality.
The designers are amateur model-plane enthusiasts who did not know that conventional
aerodynamic wisdom forbids a sharp leading edge and a step cutout from the trailing
edge. The Kline-Fogleman airfoil has relatively high drag but shows an amazing con-
tinual increase in lift out to a = 45°. In fact, we may fairly say that this airfoil does
not stall and provides smooth performance over a tremendous range of flight condi-
tions. No explanation for this behavior has yet been published by any aerodynamicist.
This airfoil is under study and may or may not have any commercial value.

Another violation of conventional aerodynamic wisdom is that military aircraft are
beginning to fly, briefly, above the stall point. Fighter pilots are learning to make quick
maneuvers in the stalled region as detailed in Ref. 32. Some planes can even fly con-
tinuously while stalled—the Grumman X-29 experimental aircraft recently set a record
by flying at a = 67°.

-B
(@) )
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Fig. 7.28 Performance of airfoils
with and without high-lift devices:
A = NACA 0009; B = NACA 63-
009; C = Kline-Fogleman airfoil

(from Ref. 17); D to I shown in (a):

(a) types of high-lift devices; (b)

lift coefficients for various devices.

New Aircraft Designs

Fig. 7.29 New aircraft designs do
not necessarily look like your typi-
cal jetliner. (From Ref. 42.)
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The Kline-Fogleman airfoil in Fig. 7.28 is a departure from conventional aerodynamics,
but there have been other striking departures, as detailed in a recent article [42]. These
new aircraft, conceived presently as small models, have a variety of configurations, as
shown in Fig. 7.29: ring-wing, cruciform, flying saucer, and flap-wing. A saucer config-
uration (Fig. 7.29¢), with a diameter of 40 in, has been successfully flown by radio con-
trol, and its inventor, Jack M. Jones, plans for a 20-ft two-passenger version. Another 18-
in-span microplane called the Bat (not shown), made by MLB Co., flies for 20 min at
40 mi/h and contains a video camera for surveillance. New engines have been reduced
to a 10- by 3-mm size, producing 20 W of power. At the other end of the size spectrum,
Boeing and NASA engineers have proposed a jumbo flying-wing jetliner, similar in shape
to the stealth bomber, which would carry 800 passengers for a range of 7000 mi.

Further information on the performance of lifting craft can be found in Refs. 12,
13, and 16. We discuss this matter again briefly in Chap. 8.

(a) Ring-wing (b) Cruciform delta

(c) Flying saucer (d) Flap-wing dragonfly
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EXAMPLE 7.8

An aircraft weighs 75,000 1b, has a planform area of 2500 ft?, and can deliver a constant
thrust of 12,000 Ib. It has an aspect ratio of 7, and Cp.. = 0.02. Neglecting rolling resistance,
estimate the takeoff distance at sea level if takeoff speed equals 1.2 times stall speed. Take
CL,max =2.0.

Solution

The stall speed from Eq. (7.72), with sea-level density p = 0.00237 slug/ft*, is

L[ 2W e 2(75,000)
: (cL,maprp> 2.0(0.00237)(2500)

Hence takeoff speed V, = 1.2V, = 135 ft/s. The drag is estimated from Eq. (7.71) for AR = 7 as

2

Ci
Cp~0.02 + T = 0.02 + 0.0455C2

12
] = 112.5 ft/s

A force balance in the direction of takeoff gives

F,= m%: thrust — drag = T — kV* k= 3CppA, 1)
Since we are looking for distance, not time, we introduce dV/dt = V dV/ds into Eq. (1), sepa-
rate variables, and integrate

S0 om (V0 d(V?
J; dS—2f0 T— 12 k = const

or Sg= Mgyt m T
"2k T—kVG 2k T-D,

)
where Dy = kV?3 is the takeoff drag. Equation (2) is the desired theoretical relation for takeoff

distance. For the particular numerical values, take

_ 75,000
322

m = 2329 slugs

W 75,000
1pV3A,  3(0.00237)(135)%(2500)

Cry= =139

Cp, = 0.02 + 0.0455(C1,)* = 0.108
k= 3Cp,pA, = (5)(0.108)(0.00237)(2500) = 0.319 slug/ft
Dy = kV§ = 5820 1b
Then Eq. (2) predicts that

S = 2329 slugs n 12,000
% 200319 slug/ft) 12,000 — 5820

= 3650 In 1.94 = 2420 ft Ans.

A more exact analysis accounting for variable k [13] gives the same result to within 1 percent.
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Summary

Problems

Most of the problems herein are fairly straightforward. More dif-
ficult or open-ended assignments are labeled with an asterisk. Prob-
lems labeled with an EES icon will benefit from the use of the En-

This chapter has dealt with viscous effects in external flow past bodies immersed in a
stream. When the Reynolds number is large, viscous forces are confined to a thin bound-
ary layer and wake in the vicinity of the body. Flow outside these “shear layers” is es-
sentially inviscid and can be predicted by potential theory and Bernoulli’s equation.

The chapter begins with a discussion of the flat-plate boundary layer and the use of
momentum-integral estimates to predict the wall shear, friction drag, and thickness of
such layers. These approximations suggest how to eliminate certain small terms in the
Navier-Stokes equations, resulting in Prandtl’s boundary-layer equations for laminar
and turbulent flow. Section 7.4 then solves the boundary-layer equations to give very
accurate formulas for flat-plate flow at high Reynolds numbers. Rough-wall effects are
included, and Sec. 7.5 gives a brief introduction to pressure-gradient effects. An ad-
verse (decelerating) gradient is seen to cause flow separation, where the boundary layer
breaks away from the surface and forms a broad, low-pressure wake.

Boundary-layer theory fails in separated flows, which are commonly studied by
experiment. Section 7.6 gives data on drag coefficients of various two- and three-
dimensional body shapes. The chapter ends with a brief discussion of lift forces gen-
erated by lifting bodies such as airfoils and hydrofoils. Airfoils also suffer flow sepa-
ration or stall at high angles of incidence.

cm, a chord length of 1.5 m, and a wingspan of 12 m. What
is the appropriate value of the Reynolds number for cor-
relating the lift and drag of this wing? Explain your se-
lection.

’ ° . ; . P7.3  Equation (7.1b) assumes that the boundary layer on the
gineering Equation Solver (EES), while problems labeled with a plate is turbulent from the leading edge onward. Devise
computer disk may require the use of a computer. The standard a scheme for determining the boundary-layer thickness
e.nd-of-chapter problems 7.1 to 7.124 (categorized in the problem more accurately when the flow is laminar up to a point
list below) are followed by word problems W7.1 to W7.12, fun- Re, ory and turbulent thereafter. Apply this scheme to com-
damente?ls of engineering exam problems EE7.1 tq FE7.10, com- putation of the boundary-layer thickness at x = 1.5 m in
prehensive problems C7.1 to C7.4, and design project D7.1. 40 m/s flow of air at 20°C and 1 atm past a flat plate.
Problem Distribution (ljzrrlli%are your result with Eq. (7.10). Assume Re, i =
Section Topic Problems P7.4  Air at 20°C and 1 atm flows at 15 m/s past a flat plate

7.1 Reynolds-number and geometry 7.1-7.5 with Re, ¢y = 1 E6. At what point x will the boundary-
7.2 Momentum-integral estimates 7.6-7.12 layer thickness be 8 mm? Why do Eqgs. (7.1) seem to fail?
7.3 The boundary-layer equations 7.13-7.15 Make a sketch illustrating the discrepancy; then use the
74 Laminar flat-plate flow 7.16-7.29 ideas in Prob. 7.3 to complete this problem correctly.
74 Turbulent flat-plate flow _ 7.30-7.46 P7.5  SAE 30 oil at 20°C flows at 1.8 ft*/s from a reservoir into
75 Boundary layers with pressure gradient 7.47-7.52 a 6-in-diameter pipe. Use flat-plate theory to estimate the
7.6 Drag of two-dimensional bodies 7.53-7.63 " . .
) . . . position x where the pipe-wall boundary layers meet in the
7.6 Drag of three-dimensional bodies 7.64-7.114 ter. C ith Eq. (6.5) d e 1
7.6 Lifting bodies—airfoils 7.115-7.124 center. Lompare with £q. (6.2), ahd gIve some explana-
tions for the discrepancy.
P7.6  For the laminar parabolic boundary-layer profile of Eq.
P7.1  For flow at 20 m/s past a thin flat plate, estimate the dis- (7.6), compute the shape factor H and compare with the
tances x from the leading edge at which the boundary-layer exact Blasius result, Eq. (7.31).
thickness will be either 1 mm or 10 cm for (a) air and () P7.7  Air at 20°C and 1 atm enters a 40-cm-square duct as

P7.2

water at 20°C and 1 atm.
Air, equivalent to that at a standard altitude of 4000 m,
flows at 450 mi/h past a wing which has a thickness of 18

in Fig. P7.7. Using the “displacement thickness” con-
cept of Fig. 7.4, estimate (a) the mean velocity and (b) the
mean pressure in the core of the flow at the position x =



