
9.1 Introduction

Motivation. All eight of our previous chapters have been concerned with “low-speed’’
or “incompressible’’ flow, i.e., where the fluid velocity is much less than its speed of
sound. In fact, we did not even develop an expression for the speed of sound of a fluid.
That is done in this chapter.

When a fluid moves at speeds comparable to its speed of sound, density changes be-
come significant and the flow is termed compressible. Such flows are difficult to obtain
in liquids, since high pressures of order 1000 atm are needed to generate sonic veloci-
ties. In gases, however, a pressure ratio of only 2!1 will likely cause sonic flow. Thus
compressible gas flow is quite common, and this subject is often called gas dynamics.

Probably the two most important and distinctive effects of compressibility on flow
are (1) choking, wherein the duct flow rate is sharply limited by the sonic condition,
and (2) shock waves, which are nearly discontinuous property changes in a supersonic
flow. The purpose of this chapter is to explain such striking phenomena and to famil-
iarize the reader with engineering calculations of compressible flow.

Speaking of calculations, the present chapter is made to order for the Engineering
Equation Solver (EES) in App. E. Compressible-flow analysis is filled with scores of
complicated algebraic equations, most of which are very difficult to manipulate or in-
vert. Consequently, for nearly a century, compressible-flow textbooks have relied upon
extensive tables of Mach number relations (see App. B) for numerical work. With EES,
however, any set of equations in this chapter can be typed out and solved for any vari-
able—see part (b) of Example 9.13 for an especially intricate example. With such a
tool, App. B serves only as a backup and indeed may soon vanish from textbooks.

We took a brief look in Chap. 4 [Eqs. (4.13) to (4.17)] to see when we might safely
neglect the compressibility inherent in every real fluid. We found that the proper cri-
terion for a nearly incompressible flow was a small Mach number

Ma ! "
V
a

" # 1

where V is the flow velocity and a is the speed of sound of the fluid. Under small-Mach-
number conditions, changes in fluid density are everywhere small in the flow field. The
energy equation becomes uncoupled, and temperature effects can be either ignored or
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put aside for later study. The equation of state degenerates into the simple statement that
density is nearly constant. This means that an incompressible flow requires only a mo-
mentum and continuity analysis, as we showed with many examples in Chaps. 7 and 8.

This chapter treats compressible flows, which have Mach numbers greater than about
0.3 and thus exhibit nonnegligible density changes. If the density change is significant,
it follows from the equation of state that the temperature and pressure changes are also
substantial. Large temperature changes imply that the energy equation can no longer
be neglected. Therefore the work is doubled from two basic equations to four

1. Continuity equation
2. Momentum equation
3. Energy equation
4. Equation of state

to be solved simultaneously for four unknowns: pressure, density, temperature, and
flow velocity (p, $, T, V). Thus the general theory of compressible flow is quite com-
plicated, and we try here to make further simplifications, especially by assuming a re-
versible adiabatic or isentropic flow.

The Mach number is the dominant parameter in compressible-flow analysis, with dif-
ferent effects depending upon its magnitude. Aerodynamicists especially make a dis-
tinction between the various ranges of Mach number, and the following rough classi-
fications are commonly used:

Ma % 0.3: incompressible flow, where density effects are negligible.
0.3 % Ma % 0.8: subsonic flow, where density effects are important but no

shock waves appear.
0.8 % Ma % 1.2: transonic flow, where shock waves first appear, dividing sub-

sonic and supersonic regions of the flow. Powered flight in the
transonic region is difficult because of the mixed character of
the flow field.

1.2 % Ma % 3.0: supersonic flow, where shock waves are present but there are
no subsonic regions.

3.0 % Ma: hypersonic flow [13], where shock waves and other flow
changes are especially strong.

The numerical values listed above are only rough guides. These five categories of flow
are appropriate to external high-speed aerodynamics. For internal (duct) flows, the most
important question is simply whether the flow is subsonic (Ma % 1) or supersonic (Ma &
1), because the effect of area changes reverses, as we show in Sec. 9.4. Since super-
sonic-flow effects may go against intuition, you should study these differences carefully.

In addition to geometry and Mach number, compressible-flow calculations also depend
upon a second dimensionless parameter, the specific-heat ratio of the gas:

k ! "
c

c
p

'
" (9.1) 
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Earlier, in Chaps. 1 and 4, we used the same symbol k to denote the thermal conduc-
tivity of a fluid. We apologize for the duplication; thermal conductivity does not ap-
pear in these later chapters of the text.

Recall from Fig. 1.3 that k for the common gases decreases slowly with temperature and
lies between 1.0 and 1.7. Variations in k have only a slight effect upon compressible-
flow computations, and air, k ! 1.40, is the dominant fluid of interest. Therefore, although
we assign some problems involving, e.g., steam and CO2 and helium, the compressible-
flow tables in App. B are based solely upon the single value k ! 1.40 for air.

This text contains only a single chapter on compressible flow, but, as usual, whole
books have been written on the subject. References 1 to 6, 26, 29, and 33 are intro-
ductory, fairly elementary treatments, while Refs. 7 to 14, 27 to 28, 31 to 32, and 35
are advanced. From time to time we shall defer some specialized topic to these texts.

We note in passing that there are at least two flow patterns which depend strongly upon
very small density differences, acoustics, and natural convection. Acoustics [9, 14] is the
study of sound-wave propagation, which is accompanied by extremely small changes in
density, pressure, and temperature. Natural convection is the gentle circulating pattern set
up by buoyancy forces in a fluid stratified by uneven heating or uneven concentration of
dissolved materials. Here we are concerned only with steady compressible flow where the
fluid velocity is of magnitude comparable to that of the speed of sound.

In principle, compressible-flow calculations can be made for any fluid equation of state,
and we shall assign problems involving the steam tables [15], the gas tables [16], and
liquids [Eq. (1.19)]. But in fact most elementary treatments are confined to the perfect
gas with constant specific heats

p ! $RT R ! cp ( c' ! const k ! "
c

c
p

'
" ! const (9.2) 

For all real gases, cp, c' , and k vary with temperature but only moderately; for exam-
ple, cp of air increases 30 percent as temperature increases from 0 to 5000°F. Since we
rarely deal with such large temperature changes, it is quite reasonable to assume con-
stant specific heats.

Recall from Sec. 1.6 that the gas constant is related to a universal constant ) di-
vided by the gas molecular weight

Rgas ! "
M

)

gas
" (9.3) 

where ) ! 49,720 ft2/(s2 * °R) ! 8314 m2/(s2 * K) 

For air, M ! 28.97, and we shall adopt the following property values for air through-
out this chapter:

R ! 1717 ft2/(s2 * °R) ! 287 m2/(s2 * K) k ! 1.400 

c' ! "
k (

R
1

" ! 4293 ft2/(s2 * °R) ! 718 m2/(s2 * K) (9.4) 

cp ! "
k

k
(
R

1
" ! 6010 ft2/(s2 * °R) ! 1005 m2/(s2 * K)
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Isentropic Process

Experimental values of k for eight common gases were shown in Fig. 1.3. From this
figure and the molecular weight, the other properties can be computed, as in Eqs. (9.4).

The changes in the internal energy ûand enthalpy h of a perfect gas are computed
for constant specific heats as

û2 ( û1 ! c'(T2 ( T1) h2 ( h1 ! cp(T2 ( T1) (9.5) 

For variable specific heats one must integrate û! " c' dT and h ! " cp dT or use the
gas tables [16]. Most modern thermodynamics texts now contain software for evaluat-
ing properties of nonideal gases [17].

The isentropic approximation is common in compressible-flow theory. We compute the
entropy change from the first and second laws of thermodynamics for a pure substance
[17 or 18]

T ds ! dh ( "
d
$
p
" (9.6) 

Introducing dh ! cp dT for a perfect gas and solving for ds, we substitute $T ! p/R
from the perfect-gas law and obtain

#2

1
ds ! #2

1
cp "

d
T
T
" ( R #2

1
"
d
p
p
" (9.7) 

If cp is variable, the gas tables will be needed, but for constant cp we obtain the ana-
lytic results

s2 ( s1 ! cp ln "
T
T

2

1
" ( R ln "

p
p

2

1
" ! c' ln "

T
T

2

1
" ( R ln "

$
$

2

1
" (9.8) 

Equations (9.8) are used to compute the entropy change across a shock wave (Sec. 9.5),
which is an irreversible process.

For isentropic flow, we set s2 ! s1 and obtain the interesting power-law relations
for an isentropic perfect gas

"
p
p

2

1
" ! $"

T
T

2

1
"%

k/(k(1) 
! $"

$
$

2

1
"%

k
(9.9) 

These relations are used in Sec. 9.3.

EXAMPLE 9.1

Argon flows through a tube such that its initial condition is p1 ! 1.7 MPa and $1 ! 18 kg/m3

and its final condition is p2 ! 248 kPa and T2 ! 400 K. Estimate (a) the initial temperature, (b)
the final density, (c) the change in enthalpy, and (d) the change in entropy of the gas.

Solution

From Table A.4 for argon, R ! 208 m2/(s2 * K) and k ! 1.67. Therefore estimate its specific heat
at constant pressure from Eq. (9.4):
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cp ! "
k

k
(
R

1
" ! "

1
1
.
.
6
6
7
7
(2
(
08

1
)

" ! 519 m2/(s2 * K)

The initial temperature and final density are estimated from the ideal gas law, Eq. (9.2):

T1 ! "
$
p
1

1

R
" ! ! 454 K Ans. (a) 

$2 ! "
T
p
2

2

R
" ! ! 2.98 kg/m3 Ans. (b) 

From Eq. (9.5) the enthalpy change is

h2 ( h1 ! cp(T2 ( T1) ! 519(400 ( 454) ! ( 28,000 J/kg (or m2/s2) Ans. (c) 

The argon temperature and enthalpy decrease as we move down the tube. Actually, there may
not be any external cooling; i.e., the fluid enthalpy may be converted by friction to increased ki-
netic energy (Sec. 9.7).

Finally, the entropy change is computed from Eq. (9.8):

s2 ( s1 ! cp ln "
T
T

2

1
" ( R ln "

p
p

2

1
"

! 519 ln "
4
4
0
5
0
4

" ( 208 ln "
0.
1
2
.
4
7
8
E
E
6
6

"

! (66 + 400 ! 334 m2/(s2 * K) Ans. (d) 

The fluid entropy has increased. If there is no heat transfer, this indicates an irreversible process.
Note that entropy has the same units as the gas constant and specific heat.

This problem is not just arbitrary numbers. It correctly simulates the behavior of argon mov-
ing subsonically through a tube with large frictional effects (Sec. 9.7).

The so-called speed of sound is the rate of propagation of a pressure pulse of infini-
tesimal strength through a still fluid. It is a thermodynamic property of a fluid. Let us
analyze it by first considering a pulse of finite strength, as in Fig. 9.1. In Fig. 9.1a the
pulse, or pressure wave, moves at speed C toward the still fluid (p, $, T, V ! 0) at the
left, leaving behind at the right a fluid of increased properties (p + ,p, $ + ,$, T +
,T) and a fluid velocity ,V toward the left following the wave but much slower. We
can determine these effects by making a control-volume analysis across the wave. To
avoid the unsteady terms which would be necessary in Fig. 9.1a, we adopt instead the
control volume of Fig. 9.1b, which moves at wave speed C to the left. The wave ap-
pears fixed from this viewpoint, and the fluid appears to have velocity C on the left
and C ( ,V on the right. The thermodynamic properties p, $, and T are not affected
by this change of viewpoint.

The flow in Fig. 9.1b is steady and one-dimensional across the wave. The continu-
ity equation is thus, from Eq. (3.24),

$AC ! ($ + ,$)(A)(C ( ,V) 

or ,V ! C "
$ +

,$
,$
" (9.10) 

248 E3 N/m2

"""
(400 K)[208 m2/(s2 * K)]

1.7 E6 N/m2

"""
(18 kg/m3)[208 m2/(s2 * K)]

9.2 The Speed of Sound 575



Fig. 9.1 Control-volume analysis of
a finite-strength pressure wave:
(a) control volume fixed to still
fluid at left; (b) control volume
moving left at wave speed C.

This proves our contention that the induced fluid velocity on the right is much smaller
than the wave speed C. In the limit of infinitesimal wave strength (sound wave) this
speed is itself infinitesimal.

Notice that there are no velocity gradients on either side of the wave. Therefore,
even if fluid viscosity is large, frictional effects are confined to the interior of the wave.
Advanced texts [for example, 14] show that the thickness of pressure waves in gases
is of order 10(6 ft at atmospheric pressure. Thus we can safely neglect friction and ap-
ply the one-dimensional momentum equation (3.40) across the wave

& Fright ! ṁ(Vout ( Vin) 

or pA ( (p + ,p)A ! ($AC)(C ( ,V ( C ) (9.11) 

Again the area cancels, and we can solve for the pressure change

,p ! $C ,V (9.12)

If the wave strength is very small, the pressure change is small.
Finally combine Eqs. (9.10) and (9.12) to give an expression for the wave speed

C2 ! "
,
,

p
$
" $1 + "

,
$
$
"% (9.13) 

The larger the strength ,$/$ of the wave, the faster the wave speed; i.e., powerful ex-
plosion waves move much more quickly than sound waves. In the limit of infinitesi-
mal strength ,$ → 0, we have what is defined to be the speed of sound a of a fluid:

a2 ! "
-
-
p
$
" (9.14) 
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But the evaluation of the derivative requires knowledge of the thermodynamic process
undergone by the fluid as the wave passes. Sir Isaac Newton in 1686 made a famous
error by deriving a formula for sound speed which was equivalent to assuming an
isothermal process, the result being 20 percent low for air, for example. He rational-
ized the discrepancy as being due to the “crassitude’’ (dust particles, etc.) in the air;
the error is certainly understandable when we reflect that it was made 180 years be-
fore the proper basis was laid for the second law of thermodynamics.

We now see that the correct process must be adiabatic because there are no tem-
perature gradients except inside the wave itself. For vanishing-strength sound waves
we therefore have an infinitesimal adiabatic or isentropic process. The correct expres-
sion for the sound speed is

a ! $"
-
-
p
$
"⏐s%

1/2
! $k "

-
-
p
$
"⏐T%

1/2
(9.15) 

for any fluid, gas or liquid. Even a solid has a sound speed.
For a perfect gas, From Eq. (9.2) or (9.9), we deduce that the speed of sound is

a ! $"
k
$
p
"%

1/2
! (kRT)1/2 (9.16) 

The speed of sound increases as the square root of the absolute temperature. For air,
with k ! 1.4 and R ! 1717, an easily memorized dimensional formula is

a (ft/s) ! 49[T (°R)]1/2

a (m/s) ! 20[T (K)]1/2
(9.17)

At sea-level standard temperature, 60°F ! 520°R, a ! 1117 ft/s. This decreases in the
upper atmosphere, which is cooler; at 50,000-ft standard altitude, T ! (69.7°F !
389.9°R and a ! 49(389.9)1/2 ! 968 ft/s, or 13 percent less.

Some representative values of sound speed in various materials are given in Table
9.1. For liquids and solids it is common to define the bulk modulus K of the material

K ! (! "
-
-
!
p
"⏐s

! $ "
-
-
p
$
"⏐s

(9.18) 

For example, at standard conditions, the bulk modulus of carbon tetrachloride is
163,000 lbf/in2 absolute, and its density is 3.09 slugs/ft3. Its speed of sound is there-
fore [163,000(144)/3.09]1/2 ! 2756 ft/s, or 840 m/s. Steel has a bulk modulus of
about 29 . 106 lbf/in2 absolute and water about 320 . 103 lbf/in2 absolute, or 90
times less.

For solids, it is sometimes assumed that the bulk modulus is approximately equiv-
alent to Young’s modulus of elasticity E, but in fact their ratio depends upon Poisson’s
ratio /

"
K
E

" ! 3(1 ( 2/) (9.19) 

The two are equal for / ! "13", which is approximately the case for many common met-
als such as steel and aluminum.
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Table 9.1 Sound Speed of Various
Materials at 60°F (15.5°C) and 1 atm

Material a, ft/s a, m/s

Gases:
H2 4,246 1,294
He 3,281 1,000
Air 1,117 340
Ar 1,040 317
CO2 873 266
CH4 607 185
238UF6 297 91

Liquids:
Glycerin 6,100 1,860
Water 4,890 1,490
Mercury 4,760 1,450
Ethyl alcohol 3,940 1,200

Solids:*
Aluminum 16,900 5,150
Steel 16,600 5,060
Hickory 13,200 4,020
Ice 10,500 3,200

*Plane waves. Solids also have a shear-wave
speed.



9.3 Adiabatic and Isentropic
Steady Flow

EXAMPLE 9.2

Estimate the speed of sound of carbon monoxide at 200-kPa pressure and 300°C in m/s.

Solution

From Table A.4, for CO, the molecular weight is 28.01 and k ! 1.40. Thus from Eq. (9.3) RCO !
8314/28.01 ! 297 m2/(s2 * K), and the given temperature is 300°C + 273 ! 573 K. Thus from
Eq. (9.16) we estimate

aCO ! (kRT)1/2 ! [1.40(297)(573)]1/2 ! 488 m/s Ans. 

As mentioned in Sec. 9.1, the isentropic approximation greatly simplifies a compress-
ible-flow calculation. So does the assumption of adiabatic flow, even if nonisentropic.

Consider high-speed flow of a gas past an insulated wall, as in Fig. 9.2. There is no
shaft work delivered to any part of the fluid. Therefore every streamtube in the flow
satisfies the steady-flow energy equation in the form of Eq. (3.66)

h1 + "12"V2
1 + gz1 ! h2 + "12"V2

2 + gz2 ( q + w' (9.20) 

where point 1 is upstream of point 2. You may wish to review the details of Eq. (3.66)
and its development. We saw in Example 3.16 that potential-energy changes of a gas
are extremely small compared with kinetic-energy and enthalpy terms. We shall ne-
glect the terms gz1 and gz2 in all gas-dynamic analyses.

Inside the thermal and velocity boundary layers in Fig. 9.2 the heat-transfer and 
viscous-work terms q and w' are not zero. But outside the boundary layer q and w' are
zero by definition, so that the outer flow satisfies the simple relation

h1 + "12"V2
1 ! h2 + "12"V2

2 ! const (9.21) 

The constant in Eq. (9.21) is equal to the maximum enthalpy which the fluid would
achieve if brought to rest adiabatically. We call this value h0, the stagnation enthalpy
of the flow. Thus we rewrite Eq. (9.21) in the form

h + "12"V2 ! h0 ! const (9.22) 
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Mach-Number Relations

Isentropic Pressure and Density
Relations

This should hold for steady adiabatic flow of any compressible fluid outside the bound-
ary layer. The wall in Fig. 9.2 could be either the surface of an immersed body or the
wall of a duct. We have shown the details of Fig. 9.2; typically the thermal-layer thick-
ness 0T is greater than the velocity-layer thickness 0V because most gases have a di-
mensionless Prandtl number Pr less than unity (see, e.g., Ref. 19, sec. 4-3.2). Note that
the stagnation enthalpy varies inside the thermal boundary layer, but its average value
is the same as that at the outer layer due to the insulated wall.

For nonperfect gases we may have to use the steam tables [15] or the gas tables [16]
to implement Eq. (9.22). But for a perfect gas h ! cpT, and Eq. (9.22) becomes

cpT + "12"V2 ! cpT0 (9.23) 

This establishes the stagnation temperature T0 of an adiabatic perfect-gas flow, i.e., the
temperature it achieves when decelerated to rest adiabatically.

An alternate interpretation of Eq. (9.22) occurs when the enthalpy and temperature
drop to (absolute) zero, so that the velocity achieves a maximum value

Vmax ! (2h0)1/2 ! (2cpT0)1/2 (9.24) 

No higher flow velocity can occur unless additional energy is added to the fluid through
shaft work or heat transfer (Sec. 9.8).

The dimensionless form of Eq. (9.23) brings in the Mach number Ma as a parameter,
by using Eq. (9.16) for the speed of sound of a perfect gas. Divide through by cpT to
obtain

1 + "
2
V
cp

2

T
" ! "

T
T
0" (9.25) 

But, from the perfect-gas law, cpT ! [kR/(k ( 1)]T ! a2/(k ( 1), so that Eq. (9.25) be-
comes

1 + "
(k (

2a
1
2
)V2

" ! "
T
T
0"

or "
T
T
0" ! 1 + "

k (
2

1
" Ma2 Ma ! "

V
a

" (9.26) 

This relation is plotted in Fig. 9.3 versus the Mach number for k ! 1.4. At Ma ! 5 the
temperature has dropped to "16"T0.

Since a 1 T1/2, the ratio a0 /a is the square root of (9.26)

"
a
a
0" ! $"

T
T
0"%

1/2
! '1 + "

1
2

" (k ( 1)Ma2(
1/2

(9.27)

Equation (9.27) is also plotted in Fig. 9.3. At Ma ! 5 the speed of sound has dropped
to 41 percent of the stagnation value.

Note that Eqs. (9.26) and (9.27) require only adiabatic flow and hold even in the pres-
ence of irreversibilities such as friction losses or shock waves.
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Fig. 9.3 Adiabatic (T/T0 and a/a0)
and isentropic (p/p0 and $/$0) prop-
erties versus Mach number for 
k ! 1.4.

If the flow is also isentropic, then for a perfect gas the pressure and density ratios
can be computed from Eq. (9.9) as a power of the temperature ratio

"
p
p
0" ! $"

T
T
0"%

k/(k(1)
! '1 + "

1
2

" (k ( 1) Ma2(
k/(k(1)

(9.28a) 

"
$
$
0" ! $"

T
T
0"%

1/(k(1)
! '1 + "

1
2

" (k ( 1) Ma2(
1/(k(1)

(9.28b) 

These relations are also plotted in Fig. 9.3; at Ma ! 5 the density is 1.13 percent of
its stagnation value, and the pressure is only 0.19 percent of stagnation pressure.

The quantities p0 and $0 are the isentropic stagnation pressure and density, respec-
tively, i.e., the pressure and density which the flow would achieve if brought isentrop-
ically to rest. In an adiabatic nonisentropic flow p0 and $0 retain their local meaning,
but they vary throughout the flow as the entropy changes due to friction or shock waves.
The quantities h0, T0, and a0 are constant in an adiabatic nonisentropic flow (see Sec.
9.7 for further details).

The isentropic assumptions (9.28) are effective, but are they realistic? Yes. To see why,
differentiate Eq. (9.22)

Adiabatic: dh + V dV ! 0 (9.29) 

Meanwhile, from Eq. (9.6), if ds ! 0 (isentropic process),

dh ! "
d
$
p
" (9.30) 

Combining (9.29) and (9.30), we find that an isentropic streamtube flow must be

"
d
$
p
" + V dV ! 0 (9.31) 
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Critical Values at the Sonic Point

But this is exactly the Bernoulli relation, Eq. (3.75), for steady frictionless flow with
negligible gravity terms. Thus we see that the isentropic-flow assumption is equivalent
to use of the Bernoulli or streamline form of the frictionless momentum equation.

The stagnation values (a0, T0, p0, $0) are useful reference conditions in a compressible
flow, but of comparable usefulness are the conditions where the flow is sonic, Ma !
1.0. These sonic, or critical, properties are denoted by asterisks: p*, $*, a*, and T*.
They are certain ratios of the stagnation properties as given by Eqs. (9.26) to (9.28)
when Ma ! 1.0; for k ! 1.4

"
p
p
*
0
" ! $"k +

2
1

"%
k/(k(1)

! 0.5283 "
$
$
*
0
" ! $"k +

2
1

"%
1/(k(1)

! 0.6339

(9.32) 

"
T
T
*
0
" ! "

k +
2

1
" ! 0.8333 "

a
a
*
0
" ! $"k +

2
1

"%
1/2

! 0.9129

In all isentropic flow, all critical properties are constant; in adiabatic nonisentropic flow,
a* and T* are constant, but p* and $* may vary.

The critical velocity V* equals the sonic sound speed a* by definition and is often
used as a reference velocity in isentropic or adiabatic flow

V* ! a* ! (kRT*)1/2 ! $"k 2
+
k

1
" RT0%

1/2
(9.33) 

The usefulness of these critical values will become clearer as we study compressible
duct flow with friction or heat transfer later in this chapter.

Since the great bulk of our practical calculations are for air, k ! 1.4, the stagnation-
property ratios p/p0, etc., from Eqs. (9.26) to (9.28), are tabulated for this value in Table
B.1. The increments in Mach number are rather coarse in this table because the values
are only meant as a guide; these equations are now a trivial matter to manipulate on a
hand calculator. Thirty years ago every text had extensive compressible-flow tables with
Mach-number spacings of about 0.01, so that accurate values could be interpolated.

For k ! 1.4, the following numerical versions of the isentropic and adiabatic flow
formulas are obtained:

"
T
T
0" ! 1 + 0.2 Ma2 "

$
$
0" ! (1 + 0.2 Ma2)2.5

"
p
p
0" ! (1 + 0.2 Ma2)3.5

(9.34)

Or, if we are given the properties, it is equally easy to solve for the Mach number
(again with k ! 1.4)

Ma2 ! 5$"
T
T
0" ( 1%! 5'$"

$
$
0"%

2/5
( 1( ! 5'$"

p
p
0"%

2/7
( 1( (9.35)

Note that these isentropic-flow formulas serve as the equivalent of the frictionless adi-
abatic momentum and energy equations. They relate velocity to physical properties for
a perfect gas, but they are not the “solution’’ to a gas-dynamics problem. The complete
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solution is not obtained until the continuity equation has also been satisfied, for either
one-dimensional (Sec. 9.4) or multidimensional (Sec. 9.9) flow.

One final note: These isentropic-ratio–versus–Mach-number formulas are seduc-
tive, tempting one to solve all problems by jumping right into the tables. Actually, many
problems involving (dimensional) velocity and temperature can be solved more easily
from the original raw dimensional energy equation (9.23) plus the perfect-gas law (9.2),
as the next example will illustrate.

EXAMPLE 9.3

Air flows adiabatically through a duct. At point 1 the velocity is 240 m/s, with T1 ! 320 K and
p1 ! 170 kPa. Compute (a) T0, (b) p01, (c) $0, (d) Ma, (e) Vmax, and (f ) V*. At point 2 further
downstream V2 ! 290 m/s and p2 ! 135 kPa. (g) What is the stagnation pressure p02?

Solution

For air take k ! 1.4, cp ! 1005 m2/(s2 * K), and R ! 287 m2/(s2 * K). With V1 and T1 known,
we can compute T01 from Eq. (9.23) without using the Mach number:

T01 ! T1 + "
2
V
c

2
1

p
" ! 320 + ! 320 + 29 ! 349 K Ans. (a) 

Then compute Ma1 from the known temperature ratio, using Eq. (9.35):

Ma2
1 ! 5$"

3
3
4
2
9
0

" ( 1%! 0.453 Ma1 ! 0.67 Ans. (d) 

Alternately compute a1 ! )kR*T*1* ! 359 m/s, whence Ma1 ! V1/a1 ! 240/359 ! 0.67. The
stagnation pressure at section 1 follows from Eq. (9.34):

p01 ! p1(1 + 0.2 Ma2
1)3.5 ! (170 kPa)[1 + 0.2(0.67)2]3.5 ! 230 kPa Ans. (b) 

We need the density from the perfect-gas law before we can compute the stagnation density:

$1 ! "
R
p
T
1

1
" ! "

(2
1
8
7
7
0
)
,
(
0
3
0
2
0
0)

" ! 1.85 kg/m3

whence $01 ! $1(1 + 0.2 Ma2
1)2.5 ! (1.85)[1 + 0.2(0.67)2]2.5 ! 2.29 kg/m3 Ans. (c)

Alternately, we could have gone directly to $0 ! p0/(RT0) ! (230 E3)/[(287)(349)] ! 2.29 kg/m3.
Meanwhile, the maximum velocity follows from Eq. (9.24):

Vmax ! (2cpT0)1/2 ! [2(1005)(349)]1/2 ! 838 m/s Ans. (e)

and the sonic velocity from Eq. (9.33) is

V* ! $"k 2
+
k

1
" RT0%

1/2
! '"12.4(1+.4)

1
" (287)(349)(

1/2
! 342 m/s Ans. (f)

At point 2, the temperature is not given, but since we know the flow is adiabatic, the stagnation
temperature is constant: T02 ! T01 ! 349 K. Thus, from Eq. (9.23),

T2 ! T02 ( "
2
V
c

2
2

p
" ! 349 ( "

2
(
(
2
1
9
0
0
0
)
5

2

)
" ! 307 K

Then, although the flow itself is not isentropic, the local stagnation pressure is computed by the
local isentropic condition

(240 m/s)2

"""
2[1005 m2/(s2 * K)]
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9.4 Isentropic Flow with Area
Changes

p02 ! p2$"
T
T
0

2

2"%
k/(k(1)

! (135)$"
3
3
4
0
9
7

"%
3.5

! 211 kPa Ans. (g)

This is 8 percent less than the upstream stagnation pressure p01. Notice that, in this last part, we
took advantage of the given information (T02, p2, V2) to obtain p02 in an efficient manner. You
may verify by comparison that approaching this part through the (unknown) Mach number Ma2

is more laborious.

By combining the isentropic- and/or adiabatic-flow relations with the equation of con-
tinuity we can study practical compressible-flow problems. This section treats the one-
dimensional flow approximation.

Figure 9.4 illustrates the one-dimensional flow assumption. A real flow, Fig. 9.4a,
has no slip at the walls and a velocity profile V(x, y) which varies across the duct sec-
tion (compare with Fig. 7.8). If, however, the area change is small and the wall radius
of curvature large

"
d
d
h
x
" # 1 h(x) # R(x) (9.36) 

then the flow is approximately one-dimensional, as in Fig. 9.4b, with V ! V(x) react-
ing to area change A(x). Compressible-flow nozzles and diffusers do not always sat-
isfy conditions (9.36), but we use the one-dimensional theory anyway because of its
simplicity.

For steady one-dimensional flow the equation of continuity is, from Eq. (3.24),

$(x)V(x)A(x) ! ṁ! const (9.37) 

Before applying this to duct theory, we can learn a lot from the differential form of
Eq. (9.37)

"
d
$
$
" + "

d
V
V
" + "

d
A
A
" ! 0 (9.38) 

The differential forms of the frictionless momentum equation (9.31) and the sound-
speed relation (9.15) are recalled here for convenience:
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mation.



Fig. 9.5 Effect of Mach number on
property changes with area change
in duct flow.

Momentum "
d
$
p
" + V dV ! 0

Sound speed: dp ! a2 d$
(9.39)

Now eliminate dp and d$ between Eqs. (9.38) and (9.39) to obtain the following rela-
tion between velocity change and area change in isentropic duct flow:

"
d
V
V
" ! "

d
A
A
" "

Ma2
1
( 1
" ! ("

$
d
V
p
2" (9.40) 

Inspection of this equation, without actually solving it, reveals a fascinating aspect of
compressible flow: Property changes are of opposite sign for subsonic and supersonic
flow because of the term Ma2 ( 1. There are four combinations of area change and
Mach number, summarized in Fig. 9.5.

From earlier chapters we are used to subsonic behavior (Ma % 1): When area in-
creases, velocity decreases and pressure increases, which is denoted a subsonic dif-
fuser. But in supersonic flow (Ma & 1), the velocity actually increases when the area
increases, a supersonic nozzle. The same opposing behavior occurs for an area de-
crease, which speeds up a subsonic flow and slows down a supersonic flow.

What about the sonic point Ma ! 1? Since infinite acceleration is physically im-
possible, Eq. (9.40) indicates that dV can be finite only when dA ! 0, that is, a mini-
mum area (throat) or a maximum area (bulge). In Fig. 9.6 we patch together a throat
section and a bulge section, using the rules from Fig. 9.5. The throat or converging-
diverging section can smoothly accelerate a subsonic flow through sonic to supersonic
flow, as in Fig. 9.6a. This is the only way a supersonic flow can be created by ex-
panding the gas from a stagnant reservoir. The bulge section fails; the bulge Mach num-
ber moves away from a sonic condition rather than toward it.

Although supersonic flow downstream of a nozzle requires a sonic throat, the op-
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posite is not true: A compressible gas can pass through a throat section without be-
coming sonic.

We can use the perfect-gas and isentropic-flow relations to convert the continuity re-
lation (9.37) into an algebraic expression involving only area and Mach number, as fol-
lows. Equate the mass flow at any section to the mass flow under sonic conditions
(which may not actually occur in the duct)

$VA ! $*V*A*

or "
A
A
*
" ! "

$
$
*
" "

V
V
*
" (9.41) 

Both the terms on the right are functions only of Mach number for isentropic flow.
From Eqs. (9.28) and (9.32)

"
$
$
*
" ! "

$
$
*
0
" "

$
$
0" ! +"k +

2
1

" '1 + "
1
2

" (k ( 1) Ma2(,
1/(k(1)

(9.42) 

From Eqs. (9.26) and (9.32) we obtain

"
V
V
*
" ! "

(kRT
V
*)1/2

" ! "
(kR

V
T)1/2

" $"
T
T
*
0
"%

1/2

$"
T
T
0"%

1/2

! "
M
1
a

" +"k +
2

1
" '1 + "

1
2

" (k ( 1) Ma2(,
1/2

(9.43) 

Combining Eqs. (9.41) to (9.43), we get the desired result

"
A
A
*
" ! "

M
1
a

" ' (
(1/2)(k+1)/(k(1)

(9.44) 

For k ! 1.4, Eq. (9.44) takes the numerical form

"
A
A
*
" ! "

M
1
a

" "
(1 +

1
0
.
.
7
2
28

Ma2)3

" (9.45) 

which is plotted in Fig. 9.7. Equations (9.45) and (9.34) enable us to solve any one-
dimensional isentropic-airflow problem given, say, the shape of the duct A(x) and the
stagnation conditions and assuming that there are no shock waves in the duct.

1 + "12"(k ( 1) Ma2

""
"12"(k + 1)
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the bulge cannot be sonic on physi-
cal grounds.

Perfect-Gas Relations



Fig. 9.7 Area ratio versus Mach
number for isentropic flow of a
perfect gas with k ! 1.4.

Figure 9.7 shows that the minimum area which can occur in a given isentropic duct
flow is the sonic, or critical, throat area. All other duct sections must have A greater
than A*. In many flows a critical sonic throat is not actually present, and the flow in
the duct is either entirely subsonic or, more rarely, entirely supersonic.

From Eq. (9.41) the inverse ratio A*/A equals $V/($*V*), the mass flow per unit area
at any section compared with the critical mass flow per unit area. From Fig. 9.7 this
inverse ratio rises from zero at Ma ! 0 to unity at Ma ! 1 and back down to zero at
large Ma. Thus, for given stagnation conditions, the maximum possible mass flow
passes through a duct when its throat is at the critical or sonic condition. The duct is
then said to be choked and can carry no additional mass flow unless the throat is
widened. If the throat is constricted further, the mass flow through the duct must de-
crease.

From Eqs. (9.32) and (9.33) the maximum mass flow is

ṁmax ! $*A*V* ! $0$"k +
2

1
"%

1/(k(1)
A*$"k 2

+
k

1
" RT0%

1/2

! k1/2$"k +
2

1
"%

(1/2)(k+1)/(k(1)
A*$0(RT0)1/2 (9.46a) 

For k ! 1.4 this reduces to

ṁmax ! 0.6847A*$0(RT0)1/2 ! "
0.6

(R
8
T
47

0)
p
1
0
/2
A*

" (9.46b) 

For isentropic flow through a duct, the maximum mass flow possible is proportional
to the throat area and stagnation pressure and inversely proportional to the square root
of the stagnation temperature. These are somewhat abstract facts, so let us illustrate
with some examples.

Equation (9.46) gives the maximum mass flow, which occurs at the choking condition
(sonic exit). It can be modified to predict the actual (nonmaximum) mass flow at any
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Part (a)

section where local area A and pressure p are known.1 The algebra is convoluted, so
here we give only the final result, expressed in dimensionless form:

Mass-flow function ! "
A
ṁ

" "
)

p
R*
0

T*0*" ! -"
k. 2

(.k.1
". $."

p
p.0
"%.2/.k

'.1. (. $."
p
p.0
"%.(k.(.1)./k.(. (9.47)

We stress that p and A in this relation are the local values at position x. As p/p0 falls,
this function rises rapidly and then levels out at the maximum of Eq. (9.46). A few val-
ues may be tabulated here for k ! 1.4:

p/p0 1.0 0.98 0.95 0.9 0.8 0.7 0.6 2 0.5283

Function 0.0 0.1978 0.3076 0.4226 0.5607 0.6383 0.6769 0.6847

Equation (9.47) is handy if stagnation conditions are known and the flow is not choked.
The only cumbersome algebra in these problems is the inversion of Eq. (9.45) to

compute the Mach number when A/A* is known. If available, EES is ideal for this sit-
uation and will yield Ma in a flash. In the absence of EES, the following curve-fitted
formulas are suggested; given A/A*, they estimate the Mach number within 3 2 per-
cent for k ! 1.4 if you stay within the ranges listed for each formula:

"
1 +

1
0
.7
.2
2
7
8
(
A
A
/
/
A
A
*
*)(2

"    1.34 % "
A
A
*
" % ! (9.48a)

1 ( 0.88$ln "
A
A
*
"%

0.45                   
1.0 % "

A
A
*
" % 1.34

subsonic flow

(9.48b)

Ma !
1 + 1.2$"

A
A
*
" ( 1%

1/2                   
1.0 % "

A
A
*
" % 2.9 (9.48c)

'216 "
A
A
*
" ( 254$"

A
A
*
"%

2/3

(
1/5

2.9 % "
A
A
*
" % !

supersonic flow

(9.48d)

Formulas (9.48a) and (9.48d) are asymptotically correct as A/A* → !, while (9.48b)
and (9.48c) are just curve fits. However, formulas (9.48b) and (9.48c) are seen in Fig.
9.7 to be accurate within their recommended ranges.

Note that two solutions are possible for a given A/A*, one subsonic and one super-
sonic. The proper solution cannot be selected without further information, e.g., known
pressure or temperature at the given duct section.

EXAMPLE 9.4

Air flows isentropically through a duct. At section 1 the area is 0.05 m2 and V1 ! 180 m/s, p1 ! 500
kPa, and T1 ! 470 K. Compute (a) T0, (b) Ma1, (c) p0, and (d) both A* and ṁ. If at section 2 the
area is 0.036 m2, compute Ma2 and p2 if the flow is (e) subsonic or (f) supersonic. Assume k ! 1.4.

Solution

A general sketch of the problem is shown in Fig. E9.4. With V1 and T1 known, the energy equa-
tion (9.23) gives
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1The author is indebted to Georges Aigret, of Chimay, Belgium, for suggesting this useful function.
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E9.4 

T0 ! T1 + "
2
V
c

2
1

p
" ! 470 + "

2
(
(
1
1
8
0
0
0
)
5

2

)
" ! 486 K Ans. (a)

The local sound speed a1 ! )kR*T*1* ! [(1.4)(287)(470)]1/2 ! 435 m/s. Hence

Ma1 ! "
V
a1

1" ! "
1
4
8
3
0
5

" ! 0.414 Ans. (b)

With Ma1 known, the stagnation pressure follows from Eq. (9.34):

p0 ! p1(1 + 0.2 Ma2
1)3.5 ! (500 kPa)[1 + 0.2(0.414)2]3.5 ! 563 kPa Ans. (c)

Similarly, from Eq. (9.45), the critical sonic-throat area is

"
A
A

*
1" !"

(1
1
+
.7

0
2
.
8
2

M
M

a
a
1

2
1)3

"!"
[1 +

1.7
0
2
.
8
2
(
(
0
0
.
.
4
4
1
1
4
4
)
)2]3

"! 1.547 

or A* ! "
1.

A
5

1

47
" ! "

0
1
.0
.5
5
4
m
7

2

" ! 0.0323 m2 Ans. (d)

This throat must actually be present in the duct if the flow is to become supersonic.
We now know A*. So to compute the mass flow we can use Eq. (9.46), which remains valid,

based on the numerical value of A*, whether or not a throat actually exists:

ṁ ! 0.6847 "
)
p0

R*
A
T*
*

0*
" ! 0.6847 ! 33.4 kg/s Ans. (d)

Or we could fare equally well with our new “local mass flow” formula, Eq. (9.47), using, say,
the pressure and area at section 1. Given p1/p0 ! 500/563 ! 0.889, Eq. (9.47) yields

ṁ ! -"
2.(

0
1..
.
4.4.)
".(0..8.8.9.)2./1..4.[1. (. (.0..8.8.9.)0..4./1..4.]. ! 0.447 ṁ ! 33.4 "

k
s
g
" Ans. (d)

Assume subsonic flow corresponds to section 2E in Fig. E9.4. The duct contracts to an area ra-
tio A2/A* ! 0.036/0.0323 ! 1.115, which we find on the left side of Fig. 9.7 or the subsonic
part of Table B.1. Neither the figure nor the table is that accurate. There are two accurate op-
tions. First, Eq. (9.48b) gives the estimate Ma2 ! 1 ( 0.88 ln (1.115)0.45 ! 0.676 (error less than
0.5 percent). Second, EES (App. E) will give an arbitrarily accurate solution with only three
statements (in SI units):

A2 ! 0.036

Astar ! 0.0323

A2/Astar ! (1+0.2*Ma2^2)^3/1.2^3/Ma2

)2*8*7*(4*8*6*)*
""
563,000(0.05)

(563,000)(0.0323)
""

)(2*8*7*)(*4*8*6*)*
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Part (f)

Specify that you want a subsonic solution (e.g., limit Ma2 % 1), and EES reports 

Ma2 ! 0.6758 Ans. (e)

[Ask for a supersonic solution and you receive Ma2 ! 1.4001, which is the answer to part (f).]
The pressure is given by the isentropic relation 

p2 ! ! "
56

1
3
.35

k
8
Pa

" ! 415 kPa Ans. (e)

Part (e) does not require a throat, sonic or otherwise; the flow could simply be contracting sub-
sonically from A1 to A2. 

This time assume supersonic flow, corresponding to section 2F in Fig. E9.4. Again the area ra-
tio is A2/A* ! 0.036/0.0323 ! 1.115, and we look on the right side of Fig. 9.7 or the supersonic
part of Table B.1—the latter can be read quite accurately as Ma2 ! 1.40. Again there are two
other accurate options. First, Eq. (9.48c) gives the curve-fit estimate Ma2 ! 1 + 1.2(1.115 (
1)11/2 ! 1.407, only 0.5 percent high. Second, EES will give a very accurate solution with the
same three statements from part (e). Specify that you want a supersonic solution (e.g., limit
Ma2 & 1), and EES reports 

Ma2 ! 1.4001 Ans. (f)

Again the pressure is given by the isentropic relation at the new Mach number:

p2 ! ! "
56

3
3
.18

k
3
Pa

" ! 177 kPa Ans. (f)

Note that the supersonic-flow pressure level is much less than p2 in part (e), and a sonic throat
must have occurred between sections 1 and 2F.

EXAMPLE 9.5

It is desired to expand air from p0 ! 200 kPa and T0 ! 500 K through a throat to an exit Mach
number of 2.5. If the desired mass flow is 3 kg/s, compute (a) the throat area and the exit (b)
pressure, (c) temperature, (d) velocity, and (e) area, assuming isentropic flow, with k ! 1.4.

Solution

The throat area follows from Eq. (9.47), because the throat flow must be sonic to produce a su-
personic exit:

A* ! ! ! 0.00830 m2 ! 4D*2

or Dthroat ! 10.3 cm Ans. (a)

With the exit Mach number known, the isentropic-flow relations give the pressure and temper-
ature:

pe ! ! ! 11,700 Pa Ans. (b)

Te ! ! ! 222 K Ans. (c)
500
"
2.25

T0""
1 + 0.2(2.5)2

200,000
"

17.08
p0""

[1 + 0.2(2.5)2]3.5

1
"
4

3.0[287(500)]1/2

""
0.6847(200,000)

ṁ(RT0)1/2

""
0.6847p0

p0"""
[1 + 0.2(1.4001)2]3.5

p0"""
[1 + 0.2(0.676)2]3.5
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9.5 The Normal-Shock Wave

The exit velocity follows from the known Mach number and temperature

Ve ! Mae (kRTe)
1/2 ! 2.5[1.4(287)(222)]1/2 ! 2.5(299 m/s) ! 747 m/s Ans. (d)

The exit area follows from the known throat area and exit Mach number and Eq. (9.45):

! ! 2.64 

or Ae ! 2.64A* ! 2.64(0.0083 m2) ! 0.0219 m2 ! "14"4D2
e

or De ! 16.7 cm Ans. (e)

One point might be noted: The computation of the throat area A* did not depend in any way on
the numerical value of the exit Mach number. The exit was supersonic; therefore the throat is
sonic and choked, and no further information is needed.

A common irreversibility occurring in supersonic internal or external flows is the 
normal-shock wave sketched in Fig. 9.8. Except at near-vacuum pressures such shock waves
are very thin (a few micrometers thick) and approximate a discontinuous change in flow
properties. We select a control volume just before and after the wave, as in Fig. 9.8.

The analysis is identical to that of Fig. 9.1; i.e., a shock wave is a fixed strong pres-
sure wave. To compute all property changes rather than just the wave speed, we use
all our basic one-dimensional steady-flow relations, letting section 1 be upstream and
section 2 be downstream:

$1V1 ! $2V2 ! G ! const (9.49a) 

p1 ( p2 ! $2V2
2 ( $1V2

1 (9.49b) 

Energy: h1 + "12"V2
1 ! h2 + "12"V2

2 ! h0 ! const (9.49c) 

Perfect gas: ! (9.49d) 

Constant cp: h ! cpT k ! const (9.49e) 

Note that we have canceled out the areas A1 ! A2, which is justified even in a variable
duct section because of the thinness of the wave. The first successful analyses of these
normal-shock relations are credited to W. J. M. Rankine (1870) and A. Hugoniot (1887),
hence the modern term Rankine-Hugoniot relations. If we assume that the upstream
conditions (p1, V1, $1, h1, T1) are known, Eqs. (9.49) are five algebraic relations in the
five unknowns (p2, V2, $2, h2, T2). Because of the velocity-squared term, two solutions
are found, and the correct one is determined from the second law of thermodynamics,
which requires that s2 & s1.

The velocities V1 and V2 can be eliminated from Eqs. (9.49a) to (9.49c) to obtain
the Rankine-Hugoniot relation

h2 ( h1 ! (p2 ( p1)$ + % (9.50) 
1

"
$1

1
"
$2

1
"
2

p2"
$2T2

p1"
$1T1

[1 + 0.2(2.5)2]3

""
1.728(2.5)

Ae"
A*
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Fig. 9.8 Flow through a fixed 
normal-shock wave.

This contains only thermodynamic properties and is independent of the equation 
of state. Introducing the perfect-gas law h ! cpT ! kp/[(k ( 1)$], we can rewrite 
this as

! 5 ! (9.51) 

We can compare this with the isentropic-flow relation for a very weak pressure wave
in a perfect gas

! $ %
1/k

(9.52) 

Also, the actual change in entropy across the shock can be computed from the perfect-
gas relation

! ln ' $ %
k

( (9.53) 

Assuming a given wave strength p2/p1, we can compute the density ratio and the en-
tropy change and list them as follows for k ! 1.4:

$1"
$2

p2"
p1

s2 ( s1"
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p2"
p1

$2"
$1

k + 1
"
k ( 1
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5 + p2/p1
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We see that the entropy change is negative if the pressure decreases across the shock,
which violates the second law. Thus a rarefaction shock is impossible in a perfect gas.2

We see also that weak-shock waves (p2/p1 2 2.0) are very nearly isentropic.

For a perfect gas all the property ratios across the normal shock are unique functions
of k and the upstream Mach number Ma1. For example, if we eliminate $2 and V2 from
Eqs. (9.49a) to (9.49c) and introduce h ! kp/[(k ( 1)$], we obtain

! ' ( (k ( 1)( (9.54)

But for a perfect gas $1V2
1/p1 ! kV2

1/(kRT1) ! k Ma2
1, so that Eq. (9.54) is equivalent to

! [2k Ma2
1 ( (k ( 1)] (9.55) 

From this equation we see that, for any k, p2 & p1 only if Ma1 & 1.0. Thus for flow
through a normal-shock wave, the upstream Mach number must be supersonic to sat-
isfy the second law of thermodynamics.

What about the downstream Mach number? From the perfect-gas identity $V2 !
kp Ma2, we can rewrite Eq. (9.49b) as

! "
1
1

+
+

k
k

M
M

a
a

2

2
1

2
" (9.56) 

which relates the pressure ratio to both Mach numbers. By equating Eqs. (9.55) and
(9.56) we can solve for

Ma2
2 !"

2
(
k
k (

Ma
1
2
1

)
(
M

(
a
k

2
1

(
+

1
2
)

" (9.57)

Since Ma1 must be supersonic, this equation predicts for all k & 1 that Ma2 must be
subsonic. Thus a normal-shock wave decelerates a flow almost discontinuously from
supersonic to subsonic conditions.

Further manipulation of the basic relations (9.49) for a perfect gas gives additional
equations relating the change in properties across a normal-shock wave in a perfect gas

! !

! [2 + (k ( 1) Ma2
1] (9.58) 

T02 ! T01

! ! ' (
k/(k(1)

' (
1/(k(1)

Of additional interest is the fact that the critical, or sonic, throat area A* in a duct in-
creases across a normal shock
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""
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Fig. 9.9 Change in flow properties
across a normal-shock wave for
k ! 1.4.

! ' (
(1/2)(k+1)/(k(1)

(9.59) 

All these relations are given in Table B.2 and plotted versus upstream Mach number
Ma1 in Fig. 9.9 for k ! 1.4. We see that pressure increases greatly while temperature
and density increase moderately. The effective throat area A* increases slowly at first
and then rapidly. The failure of students to account for this change in A* is a common
source of error in shock calculations.

The stagnation temperature remains the same, but the stagnation pressure and den-
sity decrease in the same ratio; i.e., the flow across the shock is adiabatic but non-
isentropic. Other basic principles governing the behavior of shock waves can be sum-
marized as follows:

1. The upstream flow is supersonic, and the downstream flow is subsonic.
2. For perfect gases (and also for real fluids except under bizarre thermodynamic

conditions) rarefaction shocks are impossible, and only a compression shock can
exist.

3. The entropy increases across a shock with consequent decreases in stagnation
pressure and stagnation density and an increase in the effective sonic-throat area.

4. Weak shock waves are very nearly isentropic.

Normal-shock waves form in ducts under transient conditions, e.g., shock tubes, and
in steady flow for certain ranges of the downstream pressure. Figure 9.10a shows a
normal shock in a supersonic nozzle. Flow is from left to right. The oblique wave pat-
tern to the left is formed by roughness elements on the nozzle walls and indicates that
the upstream flow is supersonic. Note the absence of these Mach waves (see Sec. 9.10)
in the subsonic flow downstream.
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Fig. 9.10 Normal shocks form in
both internal and external flows:
(a) Normal shock in a duct; note
the Mach-wave pattern to the left
(upstream), indicating supersonic
flow. (Courtesy of U.S. Air Force
Arnold Engineering Development
Center.) (b) Supersonic flow past a
blunt body creates a normal shock
at the nose; the apparent shock
thickness and body-corner curva-
ture are optical distortions. (Cour-
tesy of U.S. Army Ballistic Re-
search Laboratory, Aberdeen
Proving Ground.)

Normal-shock waves occur not only in supersonic duct flows but also in a variety
of supersonic external flows. An example is the supersonic flow past a blunt body
shown in Fig. 9.10b. The bow shock is curved, with a portion in front of the body
which is essentially normal to the oncoming flow. This normal portion of the bow shock
satisfies the property-change conditions just as outlined in this section. The flow in-
side the shock near the body nose is thus subsonic and at relatively high temperature
T2 & T1, and convective heat transfer is especially high in this region.

Each nonnormal portion of the bow shock in Fig. 9.10b satisfies the oblique-shock
relations to be outlined in Sec. 9.9. Note also the oblique recompression shock on the
sides of the body. What has happened is that the subsonic nose flow has accelerated
around the corners back to supersonic flow at low pressure, which must then pass
through the second shock to match the higher downstream pressure conditions.
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Moving Normal Shocks

Note the fine-grained turbulent wake structure in the rear of the body in Fig. 9.10b.
The turbulent boundary layer along the sides of the body is also clearly visible.

The analysis of a complex multidimensional supersonic flow such as in Fig. 9.10 is
beyond the scope of this book. For further information see, e.g., Ref. 14, chap. 9, or
Ref. 8, chap. 16.

The preceding analysis of the fixed shock applies equally well to the moving shock if
we reverse the transformation used in Fig. 9.1. To make the upstream conditions sim-
ulate a still fluid, we move the shock of Fig. 9.8 to the left at speed V1; that is, we fix
our coordinates to a control volume moving with the shock. The downstream flow then
appears to move to the left at a slower speed V1 ( V2 following the shock. The ther-
modynamic properties are not changed by this transformation, so that all our Eqs. (9.50)
to (9.59) are still valid.

EXAMPLE 9.6

Air flows from a reservoir where p ! 300 kPa and T ! 500 K through a throat to section 1 in
Fig. E9.6, where there is a normal-shock wave. Compute (a) p1, (b) p2, (c) p02, (d ) A*2, (e) p03,
(f) A*3, (g) p3, (h) T03, and (i) T3.

Solution

The reservoir conditions are the stagnation properties, which, for assumed one-dimensional adi-
abatic frictionless flow, hold through the throat up to section 1

p01 ! 300 kPa T01 ! 500 K

A shock wave cannot exist unless Ma1 is supersonic; therefore the flow must have accelerated
through a throat which is sonic

At ! A*1 ! 1 m2

We can now find the Mach number Ma1 from the known isentropic area ratio

"
A
A

*
1

1
" ! ! 2.0

From Eq. (9.48c)

Ma1 ! 1 + 1.2(2.0 ( 1)1/2 ! 2.20

Further iteration with Eq. (9.45) would give Ma1 ! 2.1972, showing that Eq. (9.48c) gives sat-
isfactory accuracy. The pressure p1 follows from the isentropic relation (9.28) (or Table B.1)

! [1 + 0.2(2.20)2]3.5 ! 10.7 

or p1 ! ! 28.06 kPa Ans. (a)
300 kPa
"

10.7

p01"
p1

2 m2

"
1 m2
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The pressure p2 is now obtained from Ma1 and the normal-shock relation (9.55) or Table B.2

! [2.8(2.20)2 ( 0.4] ! 5.48 

or p2 ! 5.48(28.06) ! 154 kPa Ans. (b)

In similar manner, for Ma1 ! 2.20, p02/p01 ! 0.628 from Eq. (9.58) and A*2/A*1 ! 1.592 from
Eq. (9.59), or we can read Table B.2 for these values. Thus

p02 ! 0.628(300 kPa) ! 188 kPa Ans. (c)

A*2 ! 1.592(1 m2) ! 1.592 m2 Ans. (d)

The flow from section 2 to 3 is isentropic (but at higher entropy than the flow upstream of the
shock). Thus

p03 ! p02 ! 188 kPa Ans. (e)

A*3 ! A*2 ! 1.592 m2 Ans. (f)

Knowing A*3, we can now compute p3 by finding Ma3 and without bothering to find Ma2 (which
happens to equal 0.547). The area ratio at section 3 is

"
A
A

*
3

3
" ! ! 1.884

Then, since Ma3 is known to be subsonic because it is downstream of a normal shock, we use
Eq. (9.48a) to estimate

Ma3 ! ! 0.330

The pressure p3 then follows from the isentropic relation (9.28) or Table B.1

! [1 + 0.2(0.330)2]3.5 ! 1.078 

or p3 ! ! 174 kPa Ans. (g)

Meanwhile, the flow is adiabatic throughout the duct; thus

T01 ! T02 ! T03 ! 500 K Ans. (h)

Therefore, finally, from the adiabatic relation (9.26)

! 1 + 0.2(0.330)2 ! 1.022 

or T3 ! ! 489 K Ans. (i)

Notice that this type of duct-flow problem, with or without a shock wave, requires straightfor-
ward application of algebraic perfect-gas relations coupled with a little thought given to which
formula is appropriate for the particular situation.

500 K
"
1.022

T03"
T3

188 kPa
"

1.078

p03"
p3

1 + 0.27/(1.884)2

""
1.728(1.884)

3 m2

"
1.592 m2

1
"
2.4

p2"
p1
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E9.7 

Part (a)

Part (b)

EXAMPLE 9.7

An explosion in air, k ! 1.4, creates a spherical shock wave propagating radially into still air at
standard conditions. At the instant shown in Fig. E9.7, the pressure just inside the shock is 200
lbf/in2 absolute. Estimate (a) the shock speed C and (b) the air velocity V just inside the shock.

9.5 The Normal-Shock Wave 597

C

V
POW!

p = 14.7 1bf / in2 abs
T = 520° R

200 1bf / in2 abs

Solution

In spite of the spherical geometry the flow across the shock moves normal to the spherical wave-
front; hence the normal-shock relations (9.50) to (9.59) apply. Fixing our control volume to the
moving shock, we find that the proper conditions to use in Fig. 9.8 are

C ! V1 p1 ! 14.7 lbf/in2 absolute T1 ! 520°R 

V ! V1 ( V2 p2 ! 200 lbf/in2 absolute

The speed of sound outside the shock is a1 ! 49T1
1/2 ! 1117 ft/s. We can find Ma1 from the

known pressure ratio across the shock

! ! 13.61 

From Eq. (9.55) or Table B.2

13.61 ! (2.8 Ma2
1 ( 0.4) or Ma1 ! 3.436 

Then, by definition of the Mach number,

C ! V1 ! Ma1 a1 ! 3.436(1117 ft/s) ! 3840 ft/s Ans. (a)

To find V2, we need the temperature or sound speed inside the shock. Since Ma1 is known, from
Eq. (9.58) or Table B.2 for Ma1 ! 3.436 we compute T2/T1 ! 3.228. Then

T2 ! 3.228T1 ! 3.228(520°R) ! 1679°R

At such a high temperature we should account for non-perfect-gas effects or at least use the gas
tables [16], but we won’t. Here just estimate from the perfect-gas energy equation (9.23) that

V2
2 ! 2cp(T1 ( T2) + V2

1 ! 2(6010)(520 ( 1679) + (3840)2 ! 815,000 

or V2 ! 903 ft/s 

Notice that we did this without bothering to compute Ma2, which equals 0.454, or a2 ! 49T2
1/2 !

2000 ft/s.

1
"
2.4

200 lbf/in2 absolute
"""
14.7 lbf/in2 absolute

p2"
p1



9.6 Operation of Converging
and Diverging Nozzles

Converging Nozzle

Finally, the air velocity behind the shock is

V ! V1 ( V2 ! 3840 ( 903 ! 2940 ft/s Ans. (b)

Thus a powerful explosion creates a brief but intense blast wind as it passes.3

By combining the isentropic-flow and normal-shock relations plus the concept of sonic
throat choking, we can outline the characteristics of converging and diverging nozzles.

First consider the converging nozzle sketched in Fig. 9.11a. There is an upstream reser-
voir at stagnation pressure p0. The flow is induced by lowering the downstream out-
side, or back, pressure pb below p0, resulting in the sequence of states a to e shown in
Fig. 9.11b and c.

For a moderate drop in pb to states a and b, the throat pressure is higher than the
critical value p* which would make the throat sonic. The flow in the nozzle is sub-
sonic throughout, and the jet exit pressure pe equals the back pressure pb. The mass
flow is predicted by subsonic isentropic theory and is less than the critical value ṁmax,
as shown in Fig. 9.11c.

For condition c, the back pressure exactly equals the critical pressure p* of the throat.
The throat becomes sonic, the jet exit flow is sonic, pe ! pb, and the mass flow equals
its maximum value from Eq. (9.46). The flow upstream of the throat is subsonic every-
where and predicted by isentropic theory based on the local area ratio A(x)/A* and
Table B.1.

Finally, if pb is lowered further to conditions d or e below p*, the nozzle cannot re-
spond further because it is choked at its maximum throat mass flow. The throat re-
mains sonic with pe ! p*, and the nozzle-pressure distribution is the same as in state
c, as sketched in Fig. 9.11b. The exit jet expands supersonically so that the jet pres-
sure can be reduced from p* down to pb. The jet structure is complex and multidi-
mensional and is not shown here. Being supersonic, the jet cannot send any signal up-
stream to influence the choked flow conditions in the nozzle.

If the stagnation plenum chamber is large or supplemented by a compressor, and if
the discharge chamber is larger or supplemented by a vacuum pump, the converging-
nozzle flow will be steady or nearly so. Otherwise the nozzle will be blowing down,
with p0 decreasing and pb increasing, and the flow states will be changing from, say,
state e backward to state a. Blowdown calculations are usually made by a quasi-steady
analysis based on isentropic steady-flow theory for the instantaneous pressures p0(t)
and pb(t).

EXAMPLE 9.8

A converging nozzle has a throat area of 6 cm2 and stagnation air conditions of 120 kPa and
400 K. Compute the exit pressure and mass flow if the back pressure is (a) 90 kPa and (b) 45
kPa. Assume k ! 1.4.
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3 This is the principle of the shock-tube wind tunnel, in which a controlled explosion creates a brief
flow at very high Mach number, with data taken by fast-response instruments. See, e.g., Ref. 5, sec. 4.5.



Fig. 9.11 Operation of a converging
nozzle: (a) nozzle geometry show-
ing characteristic pressures; 
(b) pressure distribution caused 
by various back pressures; 
(c) mass flow versus back pressure.

Solution

From Eq. (9.32) for k ! 1.4 the critical (sonic) throat pressure is

! 0.5283 or p* ! (0.5283)(120 kPa) ! 63.4 kPa

If the back pressure is less than this amount, the nozzle flow is choked.

For pb ! 90 kPa & p*, the flow is subsonic, not choked. The exit pressure is pe ! pb. The throat
Mach number is found from the isentropic relation (9.35) or Table B.1:

Ma2
e ! 5'$ %

2/7
( 1( ! 5'$ %

2/7
( 1( ! 0.4283 Mae ! 0.654

To find the mass flow, we could proceed with a serial attack on Mae, Te, ae, Ve, and $e, hence

120
"
90

p0"
pe

p*
"
p0
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Converging-Diverging Nozzle

to compute $eAeVe. However, since the local pressure is known, this part is ideally suited for the
dimensionless mass-flow function in Eq. (9.47). With pe/p0 ! 90/120 ! 0.75, compute

"
ṁ )

Ap
R*
0

T*0*" ! -.(0..7.5.)2./1..4.[1. (. (.0..7.5.)0..4./1..4.]. ! 0.6052

hence ṁ ! 0.6052 ! 0.129 kg/s Ans. (a)

for pe ! pb ! 90 kPa Ans. (a) 

For pb ! 45 kPa % p*, the flow is choked, similar to condition d in Fig. 9.11b. The exit pres-
sure is sonic:

pe ! p* ! 63.4 kPa Ans. (b)

The (choked) mass flow is a maximum from Eq. (9.46b):

ṁ ! ṁmax ! ! ! 0.145 kg/s Ans. (b)

Any back pressure less than 63.4 kPa would cause this same choked mass flow. Note that the
50 percent increase in exit Mach number, from 0.654 to 1.0, has increased the mass flow only
12 percent, from 0.128 to 0.145 kg/s.

Now consider the converging-diverging nozzle sketched in Fig. 9.12a. If the back pres-
sure pb is low enough, there will be supersonic flow in the diverging portion and a va-
riety of shock-wave conditions may occur, which are sketched in Fig. 9.12b. Let the
back pressure be gradually decreased.

For curves A and B in Fig. 9.12b the back pressure is not low enough to induce
sonic flow in the throat, and the flow in the nozzle is subsonic throughout. The pres-
sure distribution is computed from subsonic isentropic area-change relations, e.g., Table
B.1. The exit pressure pe ! pb, and the jet is subsonic.

For curve C the area ratio Ae/At exactly equals the critical ratio Ae/A* for a subsonic
Mae in Table B.1. The throat becomes sonic, and the mass flux reaches a maximum in Fig.
9.12c. The remainder of the nozzle flow is subsonic, including the exit jet, and pe ! pb.

Now jump for a moment to curve H. Here pb is such that pb/p0 exactly corresponds
to the critical-area ratio Ae /A* for a supersonic Mae in Table B.1. The diverging flow
is entirely supersonic, including the jet flow, and pe ! pb. This is called the design
pressure ratio of the nozzle and is the back pressure suitable for operating a supersonic
wind tunnel or an efficient rocket exhaust.

Now back up and suppose that pb lies between curves C and H, which is impossi-
ble according to purely isentropic-flow calculations. Then back pressures D to F oc-
cur in Fig. 9.12b. The throat remains choked at the sonic value, and we can match pe !
pb by placing a normal shock at just the right place in the diverging section to cause a
subsonic-diffuser flow back to the back-pressure condition. The mass flow remains at
maximum in Fig. 9.12c. At back pressure F the required normal shock stands in the
duct exit. At back pressure G no single normal shock can do the job, and so the flow
compresses outside the exit in a complex series of oblique shocks until it matches pb.

0.6847(120,000)(0.0006)
"""

[287(400)]1/2
0.6847p0Ae""

(RT0)1/2

(0.0006)(120,000)
""

)2*8*7*(4*0*0*)*

2(1.4)
"

0.4
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Fig. 9.12 Operation of a converg-
ing-diverging nozzle: (a) nozzle
geometry with possible flow con-
figurations; (b) pressure distribution
caused by various back pressures;
(c) mass flow versus back pressure.

Finally, at back pressure I, pb is lower than the design pressure H, but the nozzle is
choked and cannot respond. The exit flow expands in a complex series of supersonic
wave motions until it matches the low back pressure. See, e.g., Ref. 9, sec. 5.4, for fur-
ther details of these off-design jet-flow configurations.

Note that for pb less than back pressure C, there is supersonic flow in the nozzle
and the throat can receive no signal from the exit behavior. The flow remains choked,
and the throat has no idea what the exit conditions are.

Note also that the normal shock-patching idea is idealized. Downstream of the shock
the nozzle flow has an adverse pressure gradient, usually leading to wall boundary-
layer separation. Blockage by the greatly thickened separated layer interacts strongly
with the core flow (recall Fig. 6.27) and usually induces a series of weak two-
dimensional compression shocks rather than a single one-dimensional normal shock
(see, e.g., Ref. 14, pp. 292 and 293, for further details).
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Part (a)

Part (b)

Part (c)

EXAMPLE 9.9

A converging-diverging nozzle (Fig. 9.12a) has a throat area of 0.002 m2 and an exit area 
of 0.008 m2. Air stagnation conditions are p0 ! 1000 kPa and T0 ! 500 K. Compute the exit
pressure and mass flow for (a) design condition and the exit pressure and mass flow if (b) pb !
300 kPa and (c) pb ! 900 kPa. Assume k ! 1.4.

Solution

The design condition corresponds to supersonic isentropic flow at the given area ratio Ae/At !
0.008/0.002 ! 4.0. We can find the design Mach number either by iteration of the area-ratio for-
mula (9.45), using EES, or by the curve fit (9.48d)

Mae,design ! [216(4.0) ( 254(4.0)2/3]1/5 ! 2.95 (exact ! 2.9402)

The accuracy of the curve fit is seen to be satisfactory. The design pressure ratio follows from
Eq. (9.34)

! [1 + 0.2(2.95)2]3.5 ! 34.1 

or pe,design ! "
100

3
0
4.1

kPa
" ! 29.3 kPa Ans. (a)

Since the throat is clearly sonic at design conditions, Eq. (9.46b) applies

ṁdesign ! ṁmax ! ! Ans. (a)

! 3.61 kg/s

For pb ! 300 kPa we are definitely far below the subsonic isentropic condition C in Fig. 9.12b,
but we may even be below condition F with a normal shock in the exit, i.e., in condition G,
where oblique shocks occur outside the exit plane. If it is condition G, then pe ! pe,design ! 29.3
kPa because no shock has yet occurred. To find out, compute condition F by assuming an exit
normal shock with Ma1 ! 2.95, that is, the design Mach number just upstream of the shock.
From Eq. (9.55)

! [2.8(2.95)2 ( 0.4] ! 9.99 

or p2 ! 9.99p1 ! 9.99pe,design ! 293 kPa

Since this is less than the given pb ! 300 kPa, there is a normal shock just upstream of the exit
plane (condition E). The exit flow is subsonic and equals the back pressure

pe ! pb ! 300 kPa Ans. (b)

Also ṁ ! ṁmax ! 3.61 kg/s Ans. (b)

The throat is still sonic and choked at its maximum mass flow.

Finally, for pb ! 900 kPa, which is up near condition C, we compute Mae and pe for condition
C as a comparison. Again Ae/At ! 4.0 for this condition, with a subsonic Mae estimated from
the curve-fitted Eq. (9.48a):

Mae(C) ! ! 0.147 (exact ! 0.14655)
1 + 0.27/(4.0)2

""
1.728(4.0)

1
"
2.4

p2"
p1

0.6847(106 Pa)(0.002 m2)
"""

[287(500)]1/2
0.6847p0At""

(RT0)1/2

p0"
pe
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9.7 Compressible Duct Flow
with Friction4

Then the isentropic exit-pressure ratio for this condition is

! [1 + 0.2(0.147)2]3.5 ! 1.0152

or pe ! ! 985 kPa

The given back pressure of 900 kPa is less than this value, corresponding roughly to condition
D in Fig. 9.12b. Thus for this case there is a normal shock just downstream of the throat, and
the throat is choked

pe ! pb ! 900 kPa ṁ ! ṁmax ! 3.61 kg/s Ans. (c)

For this large exit-area ratio, the exit pressure would have to be larger than 985 kPa to cause a
subsonic flow in the throat and a mass flow less than maximum.

Section 9.4 showed the effect of area change on a compressible flow while neglecting
friction and heat transfer. We could now add friction and heat transfer to the area change
and consider coupled effects, which is done in advanced texts [for example, 8, chap.
8]. Instead, as an elementary introduction, this section treats only the effect of friction,
neglecting area change and heat transfer. The basic assumptions are

1. Steady one-dimensional adiabatic flow
2. Perfect gas with constant specific heats
3. Constant-area straight duct
4. Negligible shaft-work and potential-energy changes
5. Wall shear stress correlated by a Darcy friction factor

In effect, we are studying a Moody-type pipe-friction problem but with large changes
in kinetic energy, enthalpy, and pressure in the flow.

Consider the elemental duct control volume of area A and length dx in Fig. 9.13.
The area is constant, but other flow properties ( p, $, T, h, V ) may vary with x. Appli-

1000
"
1.0152

p0"
pe
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4 This section may be omitted without loss of continuity.

Control volume τ w 
π D d x

V

x x + d x

V + d V

p p + d p

T T + d T

h h + d h

Area A
Diameter D

ρ    + dρ ρ

d x

Fig. 9.13 Elemental control volume
for flow in a constant-area duct
with friction.



Adiabatic Flow

cation of the three conservation laws to this control volume gives three differential
equations

Continuity: $V ! "
A
ṁ

" ! G ! const 

or + ! 0 (9.60a)

x momentum: pA ( (p + dp)A ( 6w4D dx ! ṁ(V + dV ( V) 

or dp + + $V dV ! 0 (9.60b)

Energy: h + "12"V2 ! h0 ! cpT0 ! cpT + "12"V2

or cp dT + V dV ! 0 (9.60c)

Since these three equations have five unknowns—p, $, T, V, and 6w—we need two ad-
ditional relations. One is the perfect-gas law

p ! $RT or ! + (9.61) 

To eliminate 6w as an unknown, it is assumed that wall shear is correlated by a local
Darcy friction factor f

6w ! "18" f$V2 ! "18" fkp Ma2 (9.62) 

where the last form follows from the perfect-gas speed-of-sound expression a2 ! kp/$.
In practice, f can be related to the local Reynolds number and wall roughness from,
say, the Moody chart, Fig. 6.13.

Equations (9.60) and (9.61) are first-order differential equations and can be inte-
grated, by using friction-factor data, from any inlet section 1, where p1, T1, V1, etc.,
are known, to determine p(x), T(x), etc., along the duct. It is practically impossible to
eliminate all but one variable to give, say, a single differential equation for p(x), but
all equations can be written in terms of the Mach number Ma(x) and the friction fac-
tor, by using the definition of Mach number

V2 ! Ma2 kRT

or ! + (9.63) 

By eliminating variables between Eqs. (9.60) to (9.63), we obtain the working 
relations

! (k Ma2 f (9.64a)

! ( f ! ( (9.64b)
dV
"
V

dx
"
D

k Ma2

""
2(1 ( Ma2)

d$
"
$
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"
D

1 + (k ( 1) Ma2

""
2(1 ( Ma2)

dp
"
p

dT
"
T
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"
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"

V

dT
"
T
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! ! ( k Ma2 f (9.64c)

! ( f (9.64d)

! k Ma2 f (9.64e)

All these except dp0/p0 have the factor 1 ( Ma2 in the denominator, so that, like the
area-change formulas in Fig. 9.5, subsonic and supersonic flow have opposite effects:

dx
"
D

1 + "12"(k ( 1) Ma2

""
1 ( Ma2

d Ma2

"
Ma2

dx
"
D

k(k ( 1) Ma4

""
2(1 ( Ma2)

dT
"
T

dx
"
D

1
"
2

d$0"
$0

dp0"
p0
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Property Subsonic Supersonic

p Decreases Increases
$ Decreases Increases
V Increases Decreases

p0, $0 Decreases Decreases
T Decreases Increases

Ma Increases Decreases
Entropy Increases Increases

We have added to the list above that entropy must increase along the duct for either
subsonic or supersonic flow as a consequence of the second law for adiabatic flow. For
the same reason, stagnation pressure and density must both decrease.

The key parameter above is the Mach number. Whether the inlet flow is subsonic
or supersonic, the duct Mach number always tends downstream toward Ma ! 1 be-
cause this is the path along which the entropy increases. If the pressure and density are
computed from Eqs. (9.64a) and (9.64b) and the entropy from Eq. (9.53), the result can
be plotted in Fig. 9.14 versus Mach number for k ! 1.4. The maximum entropy occurs
at Ma ! 1, so that the second law requires that the duct-flow properties continually ap-
proach the sonic point. Since p0 and $0 continually decrease along the duct due to the
frictional (nonisentropic) losses, they are not useful as reference properties. Instead, the
sonic properties p*, $*, T*, p*0, and $*0 are the appropriate constant reference quanti-
ties in adiabatic duct flow. The theory then computes the ratios p/p*, T/T*, etc., as a
function of local Mach number and the integrated friction effect.

To derive working formulas, we first attack Eq. (9.64e), which relates the Mach num-
ber to friction. Separate the variables and integrate:

#L*

0
f ! #1.0

Ma2
d Ma2 (9.65) 

The upper limit is the sonic point, whether or not it is actually reached in the duct flow.
The lower limit is arbitrarily placed at the position x ! 0, where the Mach number is
Ma. The result of the integration is

! + ln (9.66)

where f
⎯

is the average friction factor between 0 and L*. In practice, an average f is al-
ways assumed, and no attempt is made to account for the slight changes in Reynolds

(k + 1) Ma2

""
2 + (k ( 1) Ma2

k + 1
"

2k
1 ( Ma2

"
k Ma2

f
⎯
L*

"
D

1 ( Ma2

"""
k Ma4[1 + "12"(k ( 1) Ma2]

dx
"
D



Fig. 9.14 Adiabatic frictional flow
in a constant-area duct always ap-
proaches Ma ! 1 to satisfy the sec-
ond law of thermodynamics. The
computed curve is independent of
the value of the friction factor.

number along the duct. For noncircular ducts, D is replaced by the hydraulic diameter
Dh ! (4 . area)/perimeter as in Eq. (6.74).

Equation (9.66) is tabulated versus Mach number in Table B.3. The length L* is the
length of duct required to develop a duct flow from Mach number Ma to the sonic
point. Many problems involve short ducts which never become sonic, for which the so-
lution uses the differences in the tabulated “maximum,’’ or sonic, length. For example,
the length ,L required to develop from Ma1 to Ma2 is given by

f
⎯

! $"
f

⎯

D
L*
"%1

( $"
f

⎯

D
L*
"%2

(9.67) 

This avoids the need for separate tabulations for short ducts.
It is recommended that the friction factor f

⎯
be estimated from the Moody chart (Fig.

6.13) for the average Reynolds number and wall-roughness ratio of the duct. Available
data [20] on duct friction for compressible flow show good agreement with the Moody
chart for subsonic flow, but the measured data in supersonic duct flow are up to 50
percent less than the equivalent Moody friction factor.

EXAMPLE 9.10

Air flows subsonically in an adiabatic 2-cm-diameter duct. The average friction factor is 0.024.
What length of duct is necessary to accelerate the flow from Ma1 ! 0.1 to Ma2 ! 0.5? What ad-
ditional length will accelerate it to Ma3 ! 1.0? Assume k ! 1.4.

,L
"
D
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Solution

Equation (9.67) applies, with values of f
⎯
L*/D computed from Eq. (9.66) or read from Table B.3:

f⎯ ! ! $ %Ma!0.1
( $ %Ma!0.5

! 66.9216 ( 1.0691 ! 65.8525 

Thus ,L ! ! 55 m Ans. (a)

The additional length ,L7 to go from Ma ! 0.5 to Ma ! 1.0 is taken directly from Table B.2

f ! $ %Ma!0.5
! 1.0691 

or ,L7 ! L *Ma!0.5 ! ! 0.9 m Ans. (b)

This is typical of these calculations: It takes 55 m to accelerate up to Ma ! 0.5 and then only
0.9 m more to get all the way up to the sonic point.

Formulas for other flow properties along the duct can be derived from Eqs. (9.64).
Equation (9.64e) can be used to eliminate f dx/D from each of the other relations, giv-
ing, for example, dp/p as a function only of Ma and d Ma2/Ma2. For convenience in
tabulating the results, each expression is then integrated all the way from (p, Ma) to
the sonic point ( p*, 1.0). The integrated results are

"
p
p
*
" ! "

M
1
a

" '"2 + (k
k

(
+

1
1
) Ma2"(

1/2
(9.68a)

"
$
$
*
" ! "

V
V
*
" ! "

M
1
a

" '"2 + (k
k

(
+

1
1
) Ma2

"(
1/2

(9.68b)

"
T
T
*
" ! "

a
a
*

2

2" !"
2 + (k

k
(
+

1
1
) Ma2" (9.68c)

"
p
p
*
0

0
" ! "

$
$
*
0

0
" ! "

M
1
a

" '"2 + (k
k

(
+

1
1
) Ma2

"(
(1/2)(k+1)/(k(1)

(9.68d )

All these ratios are also tabulated in Table B.3. For finding changes between points
Ma1 and Ma2 which are not sonic, products of these ratios are used. For example,

"
p
p

2

1
" ! "

p
p
*
2" "

p
p
*
1
" (9.69) 

since p* is a constant reference value for the flow.

EXAMPLE 9.11

For the duct flow of Example 9.10 assume that, at Ma1 ! 0.1, we have p1 ! 600 kPa and T1 !
450 K. At section 2 farther downstream, Ma2 ! 0.5. Compute (a) p2, (b) T2, (c) V2, and (d) p02.

1.0691(0.02 m)
""

0.024

fL*
"
D

,L7
"
D

65.8525(0.02 m)
""

0.024

f
⎯
L*

"D
f

⎯
L*

"D
0.024 ,L
"

0.02 m
,L
"
D
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Choking due to Friction

Solution

As preliminary information we can compute V1 and p01 from the given data:

V1 ! Ma1 a1 ! 0.1[(1.4)(287)(450)]1/2 ! 0.1(425 m/s) ! 42.5 m/s 

p01 ! p1(1 + 0.2 Ma2
1)3.5 ! (600 kPa)[1 + 0.2(0.1)2]3.5 ! 604 kPa

Now enter Table B.3 or Eqs. (9.68) to find the following property ratios:

608 Chapter 9 Compressible Flow

Use these ratios to compute all properties downstream:

p2 ! p1 ! (600 kPa) ! 117 kPa Ans. (a)

T2 ! T1 ! (450 K) ! 429 K Ans. (b)

V2 ! V1 ! (42.5 m/s) ! 208 Ans. (c) 

p02 ! p01 ! (604 kPa) ! 139 kPa Ans. (d)

Note the 77 percent reduction in stagnation pressure due to friction. The formulas are seductive,
so check your work by other means. For example, check p02 ! p2(1 + 0.2 Ma2

2)3.5.

The theory here predicts that for adiabatic frictional flow in a constant-area duct, no
matter what the inlet Mach number Ma1 is, the flow downstream tends toward the sonic
point. There is a certain duct length L*(Ma1) for which the exit Mach number will be
exactly unity. The duct is then choked.

But what if the actual length L is greater than the predicted “maximum’’ length L*?
Then the flow conditions must change, and there are two classifications.
Subsonic inlet. If L & L*(Ma1), the flow slows down until an inlet Mach number Ma2

is reached such that L ! L*(Ma2). The exit flow is sonic, and the mass flow has been
reduced by frictional choking. Further increases in duct length will continue to decrease
the inlet Ma and mass flow.
Supersonic inlet. From Table B.3 we see that friction has a very large effect on su-
personic duct flow. Even an infinite inlet Mach number will be reduced to sonic con-
ditions in only 41 diameters for f

⎯
! 0.02. Some typical numerical values are shown in

Fig. 9.15, assuming an inlet Ma ! 3.0 and f
⎯

! 0.02. For this condition L* ! 26 di-
ameters. If L is increased beyond 26D, the flow will not choke but a normal shock will
form at just the right place for the subsequent subsonic frictional flow to become sonic
exactly at the exit. Figure 9.15 shows two examples, for L/D ! 40 and 53. As the length
increases, the required normal shock moves upstream until, for Fig. 9.15, the shock is
at the inlet for L/D ! 63. Further increase in L causes the shock to move upstream of

1.3399
"
5.8218

p02/p*0"
p01/p*0

m
"
s

0.5345
"
0.1094

V2/V*
"
V1/V*

1.1429
"
1.1976

T2/T*
"
T1/T*

2.1381
"
10.9435

p2/p*
"
p1/p*

Section Ma p/p* T/T* V/V* p0/p*0

1 0.1 10.9435 1.1976 0.1094 5.8218
2 0.5 2.1381 1.1429 0.5345 1.3399



Fig. 9.15 Behavior of duct flow
with a nominal supersonic inlet
condition Ma ! 3.0: (a) L/D 2 26,
flow is supersonic throughout duct;
(b) L/D ! 40 & L*/D, normal
shock at Ma ! 2.0 with subsonic
flow then accelerating to sonic exit
point; (c) L/D ! 53, shock must
now occur at Ma ! 2.5; (d) L/D &
63, flow must be entirely subsonic
and choked at exit.

the inlet into the supersonic nozzle feeding the duct. Yet the mass flow is still the same
as for the very short duct, because presumably the feed nozzle still has a sonic throat.
Eventually, a very long duct will cause the feed-nozzle throat to become choked, thus
reducing the duct mass flow. Thus supersonic friction changes the flow pattern if L &
L* but does not choke the flow until L is much larger than L*.

EXAMPLE 9.12

Air enters a 3-cm-diameter duct at p0 ! 200 kPa, T0 ! 500 K, and V1 ! 100 m/s. The friction
factor is 0.02. Compute (a) the maximum duct length for these conditions, (b) the mass flow if
the duct length is 15 m, and (c) the reduced mass flow if L ! 30 m.

Solution

First compute

T1 ! T0 ( ! 500 ( ! 500 ( 5 ! 495 K

a1 ! (kRT1)1/2 ! 20(495)1/2 ! 445 m/s 

Thus Ma1 ! ! ! 0.225

For this Ma1, from Eq. (9.66) or interpolation in Table B.3,

! 11.0 
f
⎯
L*

"
D

100
"
445

V1"
a1

"12"(100 m/s)2

""
1005 m2/(s2 * K)

"12"V2
1"

cp
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Part (b)

Part (c)

The maximum duct length possible for these inlet conditions is

L* ! ! ! 16.5 m Ans. (a)

The given L ! 15 m is less than L*, and so the duct is not choked and the mass flow follows
from inlet conditions

$01 ! "
R
p
T
01

0
" ! ! 1.394 kg/m3

$1 ! ! ! 1.359 kg/m3

whence ṁ ! $1AV1 ! (1.359 kg/m3)' (0.03 m)2((100 m/s) 

! 0.0961 kg/s Ans. (b)

Since L ! 30 m is greater than L*, the duct must choke back until L ! L*, corresponding to a
lower inlet Ma1:

L* ! L ! 30 m 

! ! 20.0

It is difficult to interpolate for fL/D ! 20 in Table B.3 and impossible to invert Eq. (9.66) for
the Mach number without laborious iteration. But it is a breeze for EES to solve Eq. (9.66) for
the Mach number, using the following three statements:

k ! 1.4

fLD ! 20

fLD! (1( Ma^2)/k/Ma^2+ (k+ 1)/2/k*LN((k+ 1)*Ma^2/(2+ (k( 1)*Ma^2))

Simply specify Ma % 1 in the Variable Information menu and EES cheerfully reports 

Machoked ! 0.174 (23 percent less)

T1,new ! ! 497 K

a1,new ! 20(497 K)1/2 ! 446 m/s

V1,new ! Ma1 a1 ! 0.174(446) ! 77.6 m/s

$1,new ! ! 1.373 kg/m3

ṁnew ! $1AV1 ! 1.373'"
4
π

" (0.03)2((77.6)
! 0.0753 kg/s (22 percent less) Ans. (c)

The adiabatic frictional-flow assumption is appropriate to high-speed flow in short
ducts. For flow in long ducts, e.g., natural-gas pipelines, the gas state more closely ap-

$01"""
[1 + 0.2(0.174)2]2.5

T0"""
1 + 0.2(0.174)2

0.02(30 m)
""

0.03 m
f
⎯
L*

"
D

4
"
4

1.394
"
1.0255

$01"""
[1 + 0.2(0.225)2]2.5

200,000 Pa
""
287(500 K)

11.0(0.03 m)
""

0.02
(f⎯L*/D)D
""

f⎯
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Mass Flow for a Given 
Pressure Drop

proximates an isothermal flow. The analysis is the same except that the isoenergetic
energy equation (9.60c) is replaced by the simple relation

T ! const dT ! 0 (9.70) 

Again it is possible to write all property changes in terms of the Mach number. Inte-
gration of the Mach-number–friction relation yields

! + ln (k Ma2) (9.71) 

which is the isothermal analog of Eq. (9.66) for adiabatic flow.
This friction relation has the interesting result that Lmax becomes zero not at the

sonic point but at Macrit ! 1/k1/2 ! 0.845 if k ! 1.4. The inlet flow, whether subsonic
or supersonic, tends downstream toward this limiting Mach number 1/k1/2. If the tube
length L is greater than Lmax from Eq. (9.71), a subsonic flow will choke back to a
smaller Ma1 and mass flow and a supersonic flow will experience a normal-shock ad-
justment similar to Fig. 9.15.

The exit isothermal choked flow is not sonic, and so the use of the asterisk is in-
appropriate. Let p7, $7, and V7 represent properties at the choking point L ! Lmax. Then
the isothermal analysis leads to the following Mach-number relations for the flow prop-
erties:

"
p
p
7
" ! ! "

$
$
7
" ! Ma k1/2 (9.72) 

The complete analysis and some examples are given in advanced texts [for example,
8, sec. 6.4].

An interesting by-product of the isothermal analysis is an explicit relation between the
pressure drop and duct mass flow. This is a common problem which requires numeri-
cal iteration for adiabatic flow, as outlined below. In isothermal flow, we may substi-
tute dV/V ! (dp/p and V2 ! G2/[p/(RT)]2 in Eq. (9.63) to obtain

+ f ( ! 0

Since G2RT is constant for isothermal flow, this may be integrated in closed form be-
tween (x, p) ! (0, p1) and (L, p2):

G2 ! $ %
2

! (9.73) 

Thus mass flow follows directly from the known end pressures, without any use of
Mach numbers or tables.

The writer does not know of any direct analogy to Eq. (9.73) for adiabatic flow.
However, a useful adiabatic relation, involving velocities instead of pressures, is de-
rived in several textbooks [5, p. 212; 34, p. 418]:

V2
1 ! (9.74)

a2
0[1 ( (V1/V2)2]

"""
kf⎯L/D + (k + 1) ln (V2/V1)

p2
1 ( p2

2"""
RT[ f⎯L/D + 2 ln (p1/p2)]

ṁ
"
A

2 dp
"

p
dx
"
D

2p dp
"
G2RT

V
"
V7

1
"
Ma k1/2

1 ( k Ma2

""
k Ma2

f
⎯
Lmax"
D
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Part (a)

Part (b)

where a0 ! (kRT0)1/2 is the stagnation speed of sound, constant for adiabatic flow. We
assign the proof of this as a problem exercise. This may be combined with continuity
for constant duct area V1/V2 ! $2/$1, plus the following combination of adiabatic en-
ergy and the perfect-gas relation:

! ! ' ( (9.75)

If we are given the end pressures, neither V1 nor V2 will likely be known in advance.
Here, if EES is not available, we suggest only the following simple procedure. Begin
with a0 ! a1 and the bracketed term in Eq. (9.75) approximately equal to 1.0. Solve
Eq. (9.75) for a first estimate of V1/V2, and use this value in Eq. (9.74) to get a better
estimate of V1. Use V1 to improve your estimate of a0, and repeat the procedure. The
process should converge in a few iterations.

Equations (9.73) and (9.74) have one flaw: With the Mach number eliminated, the
frictional choking phenomenon is not directly evident. Therefore, assuming a subsonic
inlet flow, one should check the exit Mach number Ma2 to ensure that it is not greater
than 1/k1/2 for isothermal flow or greater than 1.0 for adiabatic flow. We illustrate both
adiabatic and isothermal flow with the following example.

EXAMPLE 9.13

Air enters a pipe of 1-cm diameter and 1.2-m length at p1 ! 220 kPa and T1 ! 300 K. If f
⎯

!
0.025 and the exit pressure is p2 ! 140 kPa, estimate the mass flow for (a) isothermal flow and
(b) adiabatic flow.

Solution

For isothermal flow Eq. (9.73) applies without iteration:

+ 2 ln ! + 2 ln ! 3.904 

G2 ! ! 85,700 or G ! 293 kg/(s * m2)

Since A ! (4/4)(0.01 m)2 ! 7.85 E-5 m2, the isothermal mass flow estimate is

ṁ ! GA ! (293)(7.85 E-5) ! 0.0230 kg/s Ans. (a)

Check that the exit Mach number is not choked:

$2 ! ! ! 1.626 kg/m3 V2 ! ! ! 180 m/s 

or Ma2 ! ! ! ! 0.52

This is well below choking, and the isothermal solution is accurate.

For adiabatic flow, we can iterate by hand, in the time-honored fashion, using Eqs. (9.74) and
(9.75) plus the definition of stagnation speed of sound. A few years ago the author would have
done just that, laboriously. However, EES makes handwork and manipulation of equations un-

180
"
347

180
""
[1.4(287)(300)]1/2

V2"
)kR*T*

293
"
1.626

G
"
$2

140,000
""
(287)(300)

p2"
RT

(220,000 Pa)2 ( (140,000 Pa)2

""""
[287 m2/(s2 * K)](300 K)(3.904)

220
"
140

(0.025)(1.2 m)
""

0.01 m
p1"
p2

f
⎯
L

"
D

2a2
0 ( (k ( 1)V2

1""
2a2

0 ( (k ( 1)V2
2

p2"
p1

T1"
T2

p2"
p1

V1"
V2

612 Chapter 9 Compressible Flow

EES



9.8 Frictionless Duct Flow with
Heat Transfer5

necessary, although careful programming and good guesses are required. If we ignore superflu-
ous output such as T2 and V2, 13 statements are appropriate. First, spell out the given physical
properties (in SI units):

k ! 1.4

P1 ! 220000

P2 ! 140000

T1 ! 300

Next, apply the adiabatic friction relations, Eqs. (9.66) and (9.67), to both points 1 and 2:

fLD1!(1(Ma1^2)/k/Ma1^2+(k+1)/2/k*LN((k+1)*Ma1^2/(2+(k-1)*Ma1^2))

fLD2!(1(Ma2^2)/k/Ma2^2+(k+1)/2/k*LN((k+1)*Ma2^2/(2+(k-1)*Ma2^2))

DeltafLD ! 0.025*1.2/0.01

fLD1 ! fLD2 + DeltafLD

Then apply the pressure-ratio formula (9.68a) to both points 1 and 2:

P1/Pstar ! ((k+1)/(2+(k-1)*Ma1^2))^0.5/Ma1

P2/Pstar ! ((k+1)/(2+(k-1)*Ma2^2))^0.5/Ma2

These are adiabatic relations, so we need not further spell out quantities such as T0 or a0 unless
we want them as additional output.

The above 10 statements are a closed algebraic system, and EES will solve them for Ma1 and
Ma2. However, the problem asks for mass flow, so we complete the system:

V1 ! Ma1*sqrt(1.4*287*T1)

Rho1 ! P1/287/T1

Mdot ! Rho1*(pi/4*0.01^2)*V1

If we apply no constraints, EES reports “cannot solve”, because its default allows all variables
to lie between (! and +!. So we enter Variable Information and constrain Ma1 and Ma2 to
lie between 0 and 1 (subsonic flow). EES still complains that it “cannot solve” but hints that
“better guesses are needed”. Indeed, the default guesses for EES variables are normally 1.0, too
large for the Mach numbers. Guess the Mach numbers equal to 0.8 or even 0.5, and EES still
complains, for a subtle reason: Since f,L/D ! 0.025(1.2/0.01) ! 3.0, Ma1 can be no larger than
0.36 (see Table B.3). Finally, then, we guess Ma1 and Ma2 ! 0.3 or 0.4, and EES happily re-
ports the solution:

Ma1 ! 0.3343 Ma2 ! 0.5175 "
f
D
L

1
" ! 3.935 "

f
D
L

2
" ! 0.9348

p* ! 67,892 Pa ṁ ! 0.0233 kg/s Ans. (b)

Though the programming is complicated, the EES approach is superior to hand iteration and, of
course, we can save this program for use again with new data.

Heat addition or removal has an interesting effect on a compressible flow. Advanced
texts [for example, 8, chap. 8] consider the combined effect of heat transfer coupled
with friction and area change in a duct. Here we confine the analysis to heat transfer
with no friction in a constant-area duct.
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Fig. 9.16 Elemental control volume
for frictionless flow in a constant-
area duct with heat transfer. The
length of the element is indetermi-
nate in this simplified theory.

Consider the elemental duct control volume in Fig. 9.16. Between sections 1 and 2
an amount of heat 0Q is added (or removed) to each incremental mass 0m passing
through. With no friction or area change, the control-volume conservation relations are
quite simple:

Continuity: $1V1 ! $2V2 ! G ! const (9.76a)

x momentum: p1 ( p2 ! G(V2 ( V1) (9.76b)

Energy: Q̇ ! ṁ(h2 + "12"V2
2 ( h1 ( "12"V2

1) 

or q ! ! ! h02 ( h01 (9.76c)

The heat transfer results in a change in stagnation enthalpy of the flow. We shall not spec-
ify exactly how the heat is transferred—combustion, nuclear reaction, evaporation, con-
densation, or wall heat exchange—but simply that it happened in amount q between 1
and 2. We remark, however, that wall heat exchange is not a good candidate for the the-
ory because wall convection is inevitably coupled with wall friction, which we neglected.

To complete the analysis, we use the perfect-gas and Mach-number relations

! h02 ( h01 ! cp(T02 ( T01)

! ! $ %
1/2

(9.77)

For a given heat transfer q ! 0Q/0m or, equivalently, a given change h02 ( h01, Eqs.
(9.76) and (9.77) can be solved algebraically for the property ratios p2/p1, Ma2/Ma1,
etc., between inlet and outlet. Note that because the heat transfer allows the entropy to
either increase or decrease, the second law imposes no restrictions on these solutions.

Before writing down these property-ratio functions, we illustrate the effect of heat
transfer in Fig. 9.17, which shows T0 and T versus Mach number in the duct. Heating
increases T0, and cooling decreases it. The maximum possible T0 occurs at Ma ! 1.0,
and we see that heating, whether the inlet is subsonic or supersonic, drives the duct
Mach number toward unity. This is analogous to the effect of friction in the previous
section. The temperature of a perfect gas increases from Ma ! 0 up to Ma ! 1/k1/2 and
then decreases. Thus there is a peculiar—or at least unexpected—region where heat-

T2"
T1

Ma2"
Ma1

Ma2 a2"
Ma1 a1

V2"
V1

p1"
$1T1

p2"
$2T2

0Q
"
0m

Q̇
"
ṁ
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Fig. 9.17 Effect of heat transfer on
Mach number.

ing (increasing T0) actually decreases the gas temperature, the difference being reflected
in a large increase of the gas kinetic energy. For k ! 1.4 this peculiar area lies between
Ma ! 0.845 and Ma ! 1.0 (interesting but not very useful information).

The complete list of the effects of simple T0 change on duct-flow properties is as
follows:

Heating Cooling

Subsonic Supersonic Subsonic Supersonic

T0 Increases Increases Decreases Decreases
Ma Increases Decreases Decreases Increases
p Decreases Increases Increases Decreases
$ Decreases Increases Increases Decreases
V Increases Decreases Decreases Increases
p0 Decreases Decreases Increases Increases
s Increases Increases Decreases Decreases
T * Increases † Decreases

*Increases up to Ma ! 1/k1/2 and decreases thereafter.
†Decreases up to Ma ! 1/k1/2 and increases thereafter.

Probably the most significant item on this list is the stagnation pressure p0, which always
decreases during heating whether the flow is subsonic or supersonic. Thus heating does
increase the Mach number of a flow but entails a loss in effective pressure recovery.

Equations (9.76) and (9.77) can be rearranged in terms of the Mach number and the
results tabulated. For convenience, we specify that the outlet section is sonic, Ma ! 1,
with reference properties T*0, T*, p*, $*, V*, and p*0. The inlet is assumed to be at ar-
bitrary Mach number Ma. Equations (9.76) and (9.77) then take the following form:

"
T
T

*
0

0
" ! (9.78a)

(k + 1) Ma2 [2 + (k ( 1) Ma2]
""""

(1 + k Ma2)2
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Part (a)

! (9.78b)

! (9.78c)

! ! (9.78d)

"
p
p
*
0

0
" ! ' (

k/(k(1)
(9.78e)

These formulas are all tabulated versus Mach number in Table B.4. The tables are
very convenient if inlet properties Ma1, V1, etc., are given but are somewhat cum-
bersome if the given information centers on T01 and T02. Let us illustrate with an
example.

EXAMPLE 9.14

A fuel-air mixture, approximated as air with k ! 1.4, enters a duct combustion chamber at V1 !
75 m/s, p1 ! 150 kPa, and T1 ! 300 K. The heat addition by combustion is 900 kJ/kg of mix-
ture. Compute (a) the exit properties V2, p2, and T2 and (b) the total heat addition which would
have caused a sonic exit flow.

Solution

First compute T01 ! T1 + V2
1/(2cp) ! 300 + (75)2/[2(1005)] ! 303 K. Then compute the change

in stagnation temperature of the gas:

q ! cp(T02 ( T01)

or T02 ! T01 + ! 303 K + ! 1199 K

We have enough information to compute the initial Mach number:

a1 ! )kR*T*1* ! [1.4(287)(300)]1/2 ! 347 m/s Ma1 ! ! ! 0.216

For this Mach number, use Eq. (9.78a) or Table B.4 to find the sonic value T*0:

At Ma1 ! 0.216: ! 0.1992 or T*0 ! ! 1521 K

Then the stagnation temperature ratio at section 2 is T02/T*0 ! 1199/1521 ! 0.788, which cor-
responds in Table B.4 to a Mach number Ma2 ! 0.573.

Now use Table B.4 at Ma1 and Ma2 to tabulate the desired property ratios.

303 K
"
0.1992

T01"
T*0

75
"
347

V1"
a1

900,000 J/kg
""
1005 J/(kg * K)

q
"
cp

2 + (k ( 1) Ma2

""
k + 1

k + 1
""
1 + k Ma2

(k + 1) Ma2

""
1 + k Ma2

$*
"
$

V
"
V*

k + 1
""
1 + k Ma2

p
"
p*

(k + 1)2 Ma2

""
(1 + k Ma2)2

T
"
T*
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Section Ma V/V* p/p* T/T*

1 0.216 0.1051 2.2528 0.2368
2 0.573 0.5398 1.6442 0.8876



Choking Effects due 
to Simple Heating 

The exit properties are computed by using these ratios to find state 2 from state 1:

V2 ! V1 ! (75 m/s) ! 385 m/s Ans. (a)

p2 ! p1 ! (150 kPa) ! 109 kPa Ans. (a)

T2 ! T1 ! (300 K) ! 1124 K Ans. (a)

The maximum allowable heat addition would drive the exit Mach number to unity:

T02 ! T*0 ! 1521 K 

qmax ! cp(T*0 ( T01) ! [1005 J/(kg * K)](1521 ( 303 K) ! 1.22 E6 J/kg Ans. (b)

Equation (9.78a) and Table B.4 indicate that the maximum possible stagnation tem-
perature in simple heating corresponds to T*0, or the sonic exit Mach number. Thus,
for given inlet conditions, only a certain maximum amount of heat can be added to the
flow, for example, 1.22 MJ/kg in Example 9.14. For a subsonic inlet there is no theo-
retical limit on heat addition: The flow chokes more and more as we add more heat,
with the inlet velocity approaching zero. For supersonic flow, even if Ma1 is infinite,
there is a finite ratio T01/ T*0 ! 0.4898 for k ! 1.4. Thus if heat is added without limit
to a supersonic flow, a normal-shock-wave adjustment is required to accommodate the
required property changes.

In subsonic flow there is no theoretical limit to the amount of cooling allowed: The
exit flow just becomes slower and slower, and the temperature approaches zero. In su-
personic flow only a finite amount of cooling can be allowed before the exit flow ap-
proaches infinite Mach number, with T02/T*0 ! 0.4898 and the exit temperature equal
to zero. There are very few practical applications for supersonic cooling.

EXAMPLE 9.15

What happens to the inlet flow in Example 9.14 if the heat addition is increased to 1400 kJ/kg
and the inlet pressure and stagnation temperature are fixed? What will be the subsequent de-
crease in mass flow?

Solution

For q ! 1400 kJ/kg, the exit will be choked at the stagnation temperature

T*0 ! T01 + ! 303 + ! 1696 K

This is higher than the value T*0 ! 1521 K in Example 9.14, so we know that condition 1 will
have to choke down to a lower Mach number. The proper value is found from the ratio 
T01/ T*0 ! 303/1696 ! 0.1787. From Table B.4 or Eq. (9.78a) for this condition, we read the

1.4 E6 J/kg
""
1005 J/(kg * K)

q
"
cp

0.8876
"
0.2368

T2/T*
"
T1/T*

1.6442
"
2.2528

p2/p*
"
p1/p*

0.5398
"
0.1051

V2/V*
"
V1/V*
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Relationship to the 
Normal-Shock Wave

new, lowered entrance Mach number: Ma1,new ! 0.203. With T01 and p1 known, the other inlet
properties follow from this Mach number:

T1 ! ! ! 301 K

a1 ! )kR*T*1* ! [1.4(287)(301)] 1/2 ! 348 m/s

V1 ! Ma1 a1 ! (0.202)(348 m/s) ! 70 m/s

$1 ! ! ! 1.74 kg/m3

Finally, the new lowered mass flow per unit area is

! $1V1 ! (1.74 kg/m3)(70 m/s) ! 122 kg/(s * m2)

This is 7 percent less than in Example 9.14, due to choking by excess heat addition.

The normal-shock-wave relations of Sec. 9.5 actually lurk within the simple heating rela-
tions as a special case. From Table B.4 or Fig. 9.17 we see that for a given stagnation tem-
perature less than T*0 there are two flow states which satisfy the simple heating relations,
one subsonic and the other supersonic. These two states have (1) the same value of T0,
(2) the same mass flow per unit area, and (3) the same value of p + $V2. Therefore these
two states are exactly equivalent to the conditions on each side of a normal-shock wave.
The second law would again require that the upstream flow Ma1 be supersonic.

To illustrate this point, take Ma1 ! 3.0 and from Table B.4 read T01/T*0 ! 0.6540 and
p1/p* ! 0.1765. Now, for the same value T02/T*0 ! 0.6540, use Table B.4 or Eq. (9.78a)
to compute Ma2 ! 0.4752 and p2/p* ! 1.8235. The value of Ma2 is exactly what we
read in the shock table, Table B.2, as the downstream Mach number when Ma1 ! 3.0.
The pressure ratio for these two states is p2/p1 ! (p2/p*)/(p1/p*) ! 1.8235/0.1765 !
10.33, which again is just what we read in Table B.2 for Ma1 ! 3.0. This illustration is
meant only to show the physical background of the simple heating relations; it would
be silly to make a practice of computing normal-shock waves in this manner.

Up to this point we have considered only one-dimensional compressible-flow theories.
This illustrated many important effects, but a one-dimensional world completely loses
sight of the wave motions which are so characteristic of supersonic flow. The only
“wave motion’’ we could muster in a one-dimensional theory was the normal-shock
wave, which amounted only to a flow discontinuity in the duct.

When we add a second dimension to the flow, wave motions immediately become ap-
parent if the flow is supersonic. Figure 9.18 shows a celebrated graphical construction
which appears in every fluid-mechanics textbook and was first presented by Ernst Mach
in 1887. The figure shows the pattern of pressure disturbances (sound waves) sent out
by a small particle moving at speed U through a still fluid whose sound velocity is a.

ṁnew"
A

150,000
""
(287)(301)

p1"
RT1

303
""
1 + 0.2(0.203)2

T01""
1 + 0.2 Ma2

1
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Fig. 9.18 Wave patterns set up by a
particle moving at speed U into
still fluid of sound velocity a:
(a) subsonic, (b) sonic, and 
(c) supersonic motion.

As the particle moves, it continually crashes against fluid particles and sends out
spherical sound waves emanating from every point along its path. A few of these spher-
ical disturbance fronts are shown in Fig. 9.18. The behavior of these fronts is quite dif-
ferent according to whether the particle speed is subsonic or supersonic.

In Fig. 9.18a, the particle moves subsonically, U % a, Ma ! U/a % 1. The spherical dis-
turbances move out in all directions and do not catch up with one another. They move well
out in front of the particle also, because they travel a distance a 0t during the time interval
0t in which the particle has moved only U 0t. Therefore a subsonic body motion makes its
presence felt everywhere in the flow field: You can “hear’’ or “feel’’ the pressure rise of an
oncoming body before it reaches you. This is apparently why that pigeon in the road, with-
out turning around to look at you, takes to the air and avoids being hit by your car.

At sonic speed, U ! a, Fig. 9.18b, the pressure disturbances move at exactly the
speed of the particle and thus pile up on the left at the position of the particle into a
sort of “front locus,’’ which is now called a Mach wave, after Ernst Mach. No distur-
bance reaches beyond the particle. If you are stationed to the left of the particle, you
cannot “hear’’ the oncoming motion. If the particle blew its horn, you couldn’t hear
that either: A sonic car can sneak up on a pigeon.

In supersonic motion, U & a, the lack of advance warning is even more pronounced.
The disturbance spheres cannot catch up with the fast-moving particle which created
them. They all trail behind the particle and are tangent to a conical locus called the
Mach cone. From the geometry of Fig. 9.18c the angle of the Mach cone is seen to be
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Fig. 9.19 Supersonic wave pattern
emanating from a projectile moving
at Ma ! 2.0. The heavy lines are
oblique-shock waves and the light
lines Mach waves (Courtesy of U.S.
Army Ballistic Research Labora-
tory, Aberdeen Proving Ground.)

! " sin# 1 $
U
a

$ $
%
%
t
t
$ " sin# 1 $

U
a

$ " sin# 1 $
M
1
a

$ (9.79)

The higher the particle Mach number, the more slender the Mach cone; for example,
! is 30° at Ma " 2.0 and 11.5° at Ma " 5.0. For the limiting case of sonic flow, Ma "
1, ! " 90°; the Mach cone becomes a plane front moving with the particle, in agree-
ment with Fig. 9.18 b.

You cannot “hear’’ the disturbance caused by the supersonic particle in Fig. 9.18 c
until you are in the zone of action inside the Mach cone. No warning can reach your
ears if you are in the zone of silence outside the cone. Thus an observer on the ground
beneath a supersonic airplane does not hear the sonic boom of the passing cone until
the plane is well past.

The Mach wave need not be a cone: Similar waves are formed by a small distur-
bance of any shape moving supersonically with respect to the ambient fluid. For ex-
ample, the “particle’’ in Fig. 9.18 c could be the leading edge of a sharp flat plate, which
would form a Mach wedge of exactly the same angle !. Mach waves are formed by
small roughnesses or boundary-layer irregularities in a supersonic wind tunnel or at
the surface of a supersonic body. Look again at Fig. 9.10: Mach waves are clearly vis-
ible along the body surface downstream of the recompression shock, especially at the
rear corner. Their angle is about 30°, indicating a Mach number of about 2.0 along this
surface. A more complicated system of Mach waves emanates from the supersonic pro-
jectile in Fig. 9.19. The Mach angles change, indicating a variable supersonic Mach
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E9.16 

number along the body surface. There are also several stronger oblique-shock waves
formed along the surface.

EXAMPLE 9.16

An observer on the ground does not hear the sonic boom caused by an airplane moving at 5-km
altitude until it is 9 km past her. What is the approximate Mach number of the plane? Assume
a small disturbance and neglect the variation of sound speed with altitude.

Solution

A finite disturbance like an airplane will create a finite-strength oblique-shock wave whose an-
gle will be somewhat larger than the Mach-wave angle ! and will curve downward due to the
variation in atmospheric sound speed. If we neglect these effects, the altitude and distance are a
measure of !, as seen in Fig. E9.16. Thus
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µ

BOOM!

Bow wave

Ma = ?

5 km

9 km

tan ! " " 0.5556 or ! " 29.05°

Hence, from Eq. (9.79),
Ma " csc ! " 2.06 Ans. 

Figures 9.10 and 9.19 and our earlier discussion all indicate that a shock wave can form
at an oblique angle to the oncoming supersonic stream. Such a wave will deflect the
stream through an angle &, unlike the normal-shock wave, for which the downstream
flow is in the same direction. In essence, an oblique shock is caused by the necessity
for a supersonic stream to turn through such an angle. Examples could be a finite wedge
at the leading edge of a body and a ramp in the wall of a supersonic wind tunnel.

The flow geometry of an oblique shock is shown in Fig. 9.20. As for the normal
shock of Fig. 9.8, state 1 denotes the upstream conditions and state 2 is downstream.
The shock angle has an arbitrary value ', and the downstream flow V2 turns at an an-
gle & which is a function of ' and state 1 conditions. The upstream flow is always su-
personic, but the downstream Mach number Ma2 " V2/a2 may be subsonic, sonic, or
supersonic, depending upon the conditions.

It is convenient to analyze the flow by breaking it up into normal and tangential
components with respect to the wave, as shown in Fig. 9.20. For a thin control volume

5 km
$
9 km

The Oblique-Shock Wave



Fig. 9.20 Geometry of flow
through an oblique-shock wave.

just encompassing the wave, we can then derive the following integral relations, can-
celing out A1 ! A2 on each side of the wave:

Continuity: $1Vn1 ! $2Vn2 (9.80a)

Normal momentum: p1 ( p2 ! $2V2
n2 ( $1V2

n1 (9.80b)

Tangential momentum: 0 ! $1Vn1(Vt2 ( Vt1) (9.80c)

Energy: h1 + "12"V2
n1 + "12"V2

t1 ! h2 + "12"V2
n2 + "12"V2

t2 ! h0 (9.80d)

We see from Eq. (9.80c) that there is no change in tangential velocity across an oblique
shock

Vt2 ! Vt1 ! Vt ! const (9.81) 

Thus tangential velocity has as its only effect the addition of a constant kinetic energy
"12"V2

t to each side of the energy equation (9.80d). We conclude that Eqs. (9.80) are iden-
tical to the normal-shock relations (9.49), with V1 and V2 replaced by the normal com-
ponents Vn1 and Vn2. All the various relations from Sec. 9.5 can be used to compute
properties of an oblique-shock wave. The trick is to use the “normal’’ Mach numbers
in place of Ma1 and Ma2:

Man1 ! ! Ma1 sin 5

Man2 ! ! Ma2 sin (5 ( 8)
(9.82)

Then, for a perfect gas with constant specific heats, the property ratios across the oblique
shock are the analogs of Eqs. (9.55) to (9.58) with Ma1 replaced by Man1:

"
p
p
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" [2k Ma2
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2

1
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1 sin2 5] (9.83c)

T02 ! T01 (9.83d)
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(9.83e)

Ma2
n2 ! (9.83f )

All these are tabulated in the normal-shock Table B.2. If you wondered why that table
listed the Mach numbers as Man1 and Man2, it should be clear now that the table is
also valid for the oblique-shock wave.

Thinking all this over, we realize by hindsight that an oblique-shock wave is the flow
pattern one would observe by running along a normal-shock wave (Fig. 9.8) at a con-
stant tangential speed Vt. Thus the normal and oblique shocks are related by a galilean,
or inertial, velocity transformation and therefore satisfy the same basic equations.

If we continue with this run-along-the-shock analogy, we find that the deflection
angle 8 increases with speed Vt up to a maximum and then decreases. From the geom-
etry of Fig. 9.20 the deflection angle is given by

8 ! tan(1 "
V
V
n

t

2
" ( tan(1 "

V
V
n

t

1
" (9.84)

If we differentiate 8 with respect to Vt and set the result equal to zero, we find that the
maximum deflection occurs when Vt /Vn1 ! (Vn2/Vn1)1/2. We can substitute this back
into Eq. (9.84) to compute

8max ! tan(1 r1/2 ( tan(1 r(1/2 r ! (9.85)

For example, if Man1 ! 3.0, from Table B.2 we find that Vn1/Vn2 ! 3.8571, the square
root of which is 1.9640. Then Eq. (9.85) predicts a maximum deflection of tan(1 1.9640 (
tan(1 (1/1.9640) ! 36.03°. The deflection is quite limited even for infinite Man1: From
Table B.2 for this case Vn1/Vn2 ! 6.0, and we compute from Eq. (9.85) that 8max ! 45.58°.

This limited-deflection idea and other facts become more evident if we plot some
of the solutions of Eqs. (9.83). For given values of V1 and a1, assuming as usual that
k ! 1.4, we can plot all possible solutions for V2 downstream of the shock. Figure 9.21
does this in velocity-component coordinates Vx and Vy, with x parallel to V1. Such a
plot is called a hodograph. The heavy dark line which looks like a fat airfoil is the lo-
cus, or shock polar, of all physically possible solutions for the given Ma1. The two
dashed-line fishtails are solutions which increase V2; they are physically impossible
because they violate the second law.

Examining the shock polar in Fig. 9.21, we see that a given deflection line of small
angle 8 crosses the polar at two possible solutions: the strong shock, which greatly de-
celerates the flow, and the weak shock, which causes a much milder deceleration. The
flow downstream of the strong shock is always subsonic, while that of the weak shock
is usually supersonic but occasionally subsonic if the deflection is large. Both types of
shock occur in practice. The weak shock is more prevalent, but the strong shock will
occur if there is a blockage or high-pressure condition downstream.

Since the shock polar is only of finite size, there is a maximum deflection 8max,
shown in Fig. 9.21, which just grazes the upper edge of the polar curve. This verifies
the kinematic discussion which led to Eq. (9.85). What happens if a supersonic flow
is forced to deflect through an angle greater than 8max? The answer is illustrated in Fig.
9.22 for flow past a wedge-shaped body.
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Fig. 9.21 The oblique-shock polar
hodograph, showing double solu-
tions (strong and weak) for small
deflection angle and no solutions at
all for large deflection.

In Fig. 9.22a the wedge half-angle 8 is less than 8max, and thus an oblique shock
forms at the nose of wave angle 5 just sufficient to cause the oncoming supersonic
stream to deflect through the wedge angle 8. Except for the usually small effect of
boundary-layer growth (see, e.g., Ref. 19, sec. 7–5.2), the Mach number Ma2 is con-
stant along the wedge surface and is given by the solution of Eqs. (9.83). The pres-
sure, density, and temperature along the surface are also nearly constant, as predicted
by Eqs. (9.83). When the flow reaches the corner of the wedge, it expands to higher
Mach number and forms a wake (not shown) similar to that in Fig. 9.10.
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Fig. 9.22 Supersonic flow past a
wedge: (a) small wedge angle, at-
tached oblique shock forms; (b)
large wedge angle, attached shock
not possible, broad curved detached
shock forms.

In Fig. 9.22b the wedge half-angle is greater than 8max, and an attached oblique
shock is impossible. The flow cannot deflect at once through the entire angle 8max, yet
somehow the flow must get around the wedge. A detached curve shock wave forms in
front of the body, discontinuously deflecting the flow through angles smaller than 8max.



Fig. 9.23 Oblique-shock deflection
versus wave angle for various up-
stream Mach numbers, k ! 1.4:
dash-dot curve, locus of 8max, di-
vides strong (right) from weak
(left) shocks; dashed curve, locus
of sonic points, divides subsonic
Ma2 (right) from supersonic Ma2

(left).

The flow then curves, expands, and deflects subsonically around the wedge, becoming
sonic and then supersonic as it passes the corner region. The flow just inside each point
on the curved shock exactly satisfies the oblique-shock relations (9.83) for that partic-
ular value of 5 and the given Ma1. Every condition along the curved shock is a point
on the shock polar of Fig. 9.21. Points near the front of the wedge are in the strong-
shock family, and points aft of the sonic line are in the weak-shock family. The analy-
sis of detached shock waves is extremely complex, and experimentation is usually
needed, e.g., the shadowgraph optical technique of Fig. 9.10.

The complete family of oblique-shock solutions can be plotted or computed from
Eqs. (9.83). For a given k, the wave angle 5 varies with Ma1 and 8, from Eq. (9.83b).
By using a trigonometric identity for tan (5 ( 8) this can be rewritten in the more con-
venient form

tan 8 ! (9.86) 

All possible solutions of Eq. (9.86) for k ! 1.4 are shown in Fig. 9.23. For deflections
8 % 8max there are two solutions: a weak shock (small 5) and a strong shock (large 5),
as expected. All points along the dash-dot line for 8max satisfy Eq. (9.85). A dashed
line has been added to show where Ma2 is exactly sonic. We see that there is a narrow
region near maximum deflection where the weak-shock downstream flow is subsonic.

For zero deflections (8 ! 0) the weak-shock family satisfies the wave-angle relation

5 ! 9 ! sin(1 "
M

1
a1
" (9.87)

2 cot 5 (Ma2
1 sin2 5 ( 1)

"""
Ma2

1 (k + cos 25) + 2
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Very Weak Shock Waves

Thus weak shocks of vanishing deflection are equivalent to Mach waves. Meanwhile
the strong shocks all converge at zero deflection to the normal-shock condition 5 ! 90°.

Two additional oblique-shock charts are given in App. B, where Fig. B.1 gives the
downstream Mach number Ma2 and Fig. B.2 the pressure ratio p2/p1, each plotted as
a function of Ma1 and 8. Additional graphs, tables, and computer programs are given
in Refs. 24 and 25.

For any finite 8 the wave angle 5 for a weak shock is greater than the Mach angle 9.
For small 8 Eq. (9.86) can be expanded in a power series in tan 8 with the following
linearized result for the wave angle:

sin 5 ! sin 9 + "
4
k
c
+
os

1
9

" tan 8 + *** + "(tan2 8) + *** (9.88)

For Ma1 between 1.4 and 20.0 and deflections less than 6° this relation predicts 5 to
within 1° for a weak shock. For larger deflections it can be used as a useful initial
guess for iterative solution of Eq. (9.86).

Other property changes across the oblique shock can also be expanded in a power
series for small deflection angles. Of particular interest is the pressure change from Eq.
(9.83a), for which the linearized result for a weak shock is

"
p2

p
(

1

p1" ! tan 8 + *** + "(tan2 8) + *** (9.89)
k Ma2

1""
(Ma2

1 ( 1)1/2
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Fig. 9.24 Pressure jump across a
weak oblique-shock wave from Eq.
(9.83a) for k ! 1.4. For very small
deflections Eq. (9.89) applies.



E9.17

The differential form of this relation is used in the next section to develop a theory for
supersonic expansion turns. Figure 9.24 shows the exact weak-shock pressure jump
computed from Eq. (9.83a). At very small deflections the curves are linear with slopes
given by Eq. (9.89).

Finally, it is educational to examine the entropy change across a very weak shock.
Using the same power-series expansion technique, we can obtain the following result
for small flow deflections:

"
s2 (

cp

s1" ! tan3 8 + *** + "(tan4 8) + *** (9.90)

The entropy change is cubic in the deflection angle 8. Thus weak shock waves are very
nearly isentropic, a fact which is also used in the next section.

EXAMPLE 9.17

Air at Ma ! 2.0 and p ! 10 lbf/in2 absolute is forced to turn through 10° by a ramp at the body
surface. A weak oblique shock forms as in Fig. E9.17. For k ! 1.4 compute from exact oblique-
shock theory (a) the wave angle 5, (b) Ma2, and (c) p2. Also use the linearized theory to esti-
mate (d) 5 and (e) p2.

Solution

With Ma1 ! 2.0 and 8 ! 10° known, we can estimate 5 ! 40° 3 2° from Fig. 9.23. For more
(hand calculated) accuracy, we have to solve Eq. (9.86) by iteration. Or we can program Eq.
(9.86) in EES with six statements (in SI units, with angles in degrees):

Ma ! 2.0
k ! 1.4
Theta ! 10
Num ! 2*(Ma^2*SIN(Beta)^2 ( 1)/TAN(Beta)
Denom ! Ma^2*(k + COS(2*Beta)) + 2
Theta ! ARCTAN(Num/Denom)

Specify that Beta & 0 and EES promptly reports an accurate result:

5 ! 39.32° Ans. (a)

The normal Mach number upstream is thus

Man1 ! Ma1 sin 5 ! 2.0 sin 39.32° ! 1.267

With Man1 we can use the normal-shock relations (Table B.2) or Fig. 9.9 or Eqs. (9.56) to (9.58)
to compute

Man2 ! 0.8031 ! 1.707 

Thus the downstream Mach number and pressure are

Ma2 ! ! ! 1.64 Ans. (b)

p2 ! (10 lbf/in2 absolute)(1.707) ! 17.07 lbf/in2 absolute Ans. (c)

Notice that the computed pressure ratio agrees with Figs. 9.24 and B.2.

0.8031
""
sin (39.32° ( 10°)

Man2""
sin (5 ( 8)

p2"
p1

(k2 ( 1)Ma6
1""

12(Ma2
1 ( 1)3/2
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9.10 Prandtl-Meyer Expansion
Waves

For the linearized theory the Mach angle is 9 ! sin(1 (1/2.0) ! 30°. Equation (9.88) then
estimates that

sin 5 ! sin 30° + ! 0.622 

or 5 ! 38.5° Ans. (d)

Equation (9.89) estimates that

! 1 + ! 1.57 

or p2 ! 1.57(10 lbf/in2 absolute) ! 15.7 lbf/in2 absolute Ans. (e)

These are reasonable estimates in spite of the fact that 10° is really not a “small’’ flow deflection.

The oblique-shock solution of Sec. 9.9 is for a finite compressive deflection 8 which
obstructs a supersonic flow and thus decreases its Mach number and velocity. The pre-
sent section treats gradual changes in flow angle which are primarily expansive; i.e.,
they widen the flow area and increase the Mach number and velocity. The property
changes accumulate in infinitesimal increments, and the linearized relations (9.88) and
(9.89) are used. The local flow deflections are infinitesimal, so that the flow is nearly
isentropic according to Eq. (9.90).

Figure 9.25 shows four examples, one of which (Fig. 9.25c) fails the test for grad-
ual changes. The gradual compression of Fig. 9.25a is essentially isentropic, with a

1.4(2)2 tan 10°
""

(22 ( 1)1/2
p2"
p1

2.4 tan 10°
""
4 cos 30°
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9.25 Some examples of supersonic
expansion and compression: (a)
gradual isentropic compression on
a concave surface, Mach waves co-
alesce farther out to form oblique
shock; (b) gradual isentropic ex-
pansion on convex surface, Mach
waves diverge; (c) sudden compres-
sion, nonisentropic shock forms;
(d) sudden expansion, centered
isentropic fan of Mach waves
forms.



smooth increase in pressure along the surface, but the Mach angle decreases along the
surface and the waves tend to coalesce farther out into an oblique-shock wave. The
gradual expansion of Fig. 9.25b causes a smooth isentropic increase of Mach number
and velocity along the surface, with diverging Mach waves formed.

The sudden compression of Fig. 9.25c cannot be accomplished by Mach waves: An
oblique shock forms, and the flow is nonisentropic. This could be what you would see
if you looked at Fig. 9.25a from far away. Finally, the sudden expansion of Fig. 9.25d
is isentropic and forms a fan of centered Mach waves emanating from the corner. Note
that the flow on any streamline passing through the fan changes smoothly to higher
Mach number and velocity. In the limit as we near the corner the flow expands almost
discontinuously at the surface. The cases in Fig. 9.25a, b, and d can all be handled by
the Prandtl-Meyer supersonic-wave theory of this section, first formulated by Ludwig
Prandtl and his student Theodor Meyer in 1907 to 1908.

Note that none of this discussion makes sense if the upstream Mach number is sub-
sonic, since Mach wave and shock wave patterns cannot exist in subsonic flow.

Consider a small, nearly infinitesimal flow deflection d8 such as occurs between the
first two Mach waves in Fig. 9.25a. From Eqs. (9.88) and (9.89) we have, in the limit,

5 ! 9 ! sin(1 "
M
1
a

" (9.91a)

"
d
p
p
" ! "

(Ma
k
2
M
(

a
1

2

)1/2" d8 (9.91b)

Since the flow is nearly isentropic, we have the frictionless differential momentum
equation for a perfect gas

dp ! ($V dV ! (kp Ma2 "
d
V
V
" (9.92)

Combining Eqs. (9.91a) and (9.92) to eliminate dp, we obtain a relation between turn-
ing angle and velocity change

d8 ! ((Ma2 ( 1)1/2 "
d
V
V
" (9.93) 

This can be integrated into a functional relation for finite turning angles if we can re-
late V to Ma. We do this from the definition of Mach number

V ! Ma a

or "
d
V
V
" ! "

d
M
M
a
a

" + "
d
a
a
" (9.94) 

Finally, we can eliminate da/a because the flow is isentropic and hence a0 is constant
for a perfect gas

a ! a0[1 + "12"(k ( 1) Ma2](1/2

or "
d
a
a
" ! (9.95)

("12"(k ( 1) Ma d Ma
"""

1 + "12"(k ( 1) Ma2
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The Prandtl-Meyer Perfect-Gas
Function



Fig,. 9.26 The Prandtl-Meyer su-
personic expansion from Eq. (9.99)
for k ! 1.4.

Eliminating dV/V and da/a from Eqs. (9.93) to (9.95), we obtain a relation solely be-
tween turning angle and Mach number

d8 ! ( "
d
M
M
a
a

" (9.96) 

Before integrating this expression, we note that the primary application is to ex-
pansions, i.e., increasing Ma and decreasing 8. Therefore, for convenience, we define
the Prandtl-Meyer angle :(Ma) which increases when 8 decreases and is zero at the
sonic point

d: ! (d8 : ! 0 at Ma ! 1 (9.97)

Thus we integrate Eq. (9.96) from the sonic point to any value of Ma

#:

0
d: ! #Ma

1
"
d
M
M
a
a

" (9.98) 

The integrals are evaluated in closed form, with the result, in radians,

:(Ma) ! K1/2 tan(1 $"Ma2

K
( 1
"%

1/2
( tan(1 (Ma2 ( 1)1/2 (9.99) 

where K ! "
k
k

+
(

1
1

"

This is the Prandtl-Meyer supersonic expansion function, which is plotted in Fig. 9.26

(Ma2 ( 1)1/2

""
1 + "12"(k ( 1) Ma2

(Ma2 ( 1)1/2

""
1 + "12"(k ( 1) Ma2
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Part (a)

and tabulated in Table B.5 for k ! 1.4, K ! 6. The angle : changes rapidly at first and
then levels off at high Mach number to a limiting value as Ma → !:

:max ! "
4
2

" (K1/2 ( 1) ! 130.45° if k ! 1.4 (9.100)

Thus a supersonic flow can expand only through a finite turning angle before it reaches
infinite Mach number, maximum velocity, and zero temperature.

Gradual expansion or compression between finite Mach numbers Ma1 and Ma2, nei-
ther of which is unity, is computed by relating the turning angle ,: to the difference
in Prandtl-Meyer angles for the two conditions

,:1→2 ! :(Ma2) ( :(Ma1) (9.101)

The change ,: may be either positive (expansion) or negative (compression) as long
as the end conditions lie in the supersonic range. Let us illustrate with an example.

EXAMPLE 9.18

Air (k ! 1.4) flows at Ma1 ! 3.0 and p1 ! 200 kPa. Compute the final downstream Mach num-
ber and pressure for (a) an expansion turn of 20° and (b) a gradual compression turn of 20°.

Solution

The isentropic stagnation pressure is

p0 ! p1[1 + 0.2(3.0)2]3.5 ! 7347 kPa

and this will be the same at the downstream point. For Ma1 ! 3.0 we find from Table B.5 or
Eq. (9.99) that :1 ! 49.757°. The flow expands to a new condition such that

:2 ! :1 + ,: ! 49.757° + 20° ! 69.757°

Linear interpolation in Table B.5 is quite accurate, yielding Ma2 ! 4.32. Inversion of Eq. (9.99),
to find Ma when : is given, is impossible without iteration. Once again, our friend EES easily
handles Eq. (9.99) with four statements (angles specified in degrees):

k ! 1.4

C ! ((k+1)/(k ( 1))^0.5

Omega ! 69.757

Omega ! C*ARCTAN((Ma^2–1)^0.5/C) –ARCTAN((Ma^2–1)^0.5)

Specify that Ma & 1, and EES readily reports an accurate result:6

Ma2 ! 4.32 Ans. (a) 

The isentropic pressure at this new condition is

p2 ! ! ! 31.9 kPa Ans. (a)
7347
"
230.1

p0""
[1 + 0.2(4.32)2]3.5
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Application to Supersonic Airfoils

The flow compresses to a lower Prandtl-Meyer angle

:2 ! 49.757° ( 20° ! 29.757°

Again from Eq. (9.99), Table B.5, or EES we compute that

Ma2 ! 2.125 Ans. (b)

p2 ! ! ! 773 kPa Ans. (b)

Similarly, density and temperature changes are computed by noticing that T0 and $0 are constant
for isentropic flow.

The oblique-shock and Prandtl-Meyer expansion theories can be used to patch together
a number of interesting and practical supersonic flow fields. This marriage, called shock
expansion theory, is limited by two conditions: (1) Except in rare instances the flow
must be supersonic throughout, and (2) the wave pattern must not suffer interference
from waves formed in other parts of the flow field.

A very successful application of shock expansion theory is to supersonic airfoils.
Figure 9.27 shows two examples, a flat plate and a diamond-shaped foil. In contrast to
subsonic-flow designs (Fig. 8.21), these airfoils must have sharp leading edges, which
form attached oblique shocks or expansion fans. Rounded supersonic leading edges
would cause detached bow shocks, as in Fig. 9.19 or 9.22b, greatly increasing the drag
and lowering the lift.

In applying shock expansion theory, one examines each surface turning angle to see
whether it is an expansion (“opening up’’) or compression (obstruction) to the surface
flow. Figure 9.27a shows a flat-plate foil at an angle of attack. There is a leading-edge
shock on the lower edge with flow deflection 8 ! ;, while the upper edge has an ex-
pansion fan with increasing Prandtl-Meyer angle ,: ! ;. We compute p3 with ex-
pansion theory and p2 with oblique-shock theory. The force on the plate is thus F !
(p2 ( p3)Cb, where C is the chord length and b the span width (assuming no wingtip
effects). This force is normal to the plate, and thus the lift force normal to the stream
is L ! F cos ;, and the drag parallel to the stream is D ! F sin ;. The dimensionless
coefficients CL and CD have the same definitions as in low-speed flow, Eq. (7.66), ex-
cept that the perfect-gas-law identity "12"$V2 / "12"kp Ma2 is very useful here

CL ! CD ! (9.102) 

The typical supersonic lift
coefficient is much smaller than the subsonic value CL ! 24;, but the lift can be very
large because of the large value of "12"$V2 at supersonic speeds.

At the trailing edge in Fig. 9.27a, a shock and fan appear in reversed positions and
bend the two flows back so that they are parallel in the wake and have the same pres-
sure. They do not have quite the same velocity because of the unequal shock strengths
on the upper and lower surfaces; hence a vortex sheet trails behind the wing. This is
very interesting, but in the theory you ignore the trailing-edge pattern entirely, since it

D
""
"12"kp! Ma2

! bC

L
""
"12"kp! Ma2

! bC

7347
"
9.51

p0"""
[1 + 0.2(2.125)2]3.5
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Fig. 9.27 Supersonic airfoils:
(a) flat plate, higher pressure on
lower surface, drag due to small
downstream component of net pres-
sure force; (b) diamond foil, higher
pressures on both lower surfaces,
additional drag due to body thick-
ness.

does not affect the surface pressures: The supersonic surface flow cannot “hear’’ the
wake disturbances.

The diamond foil in Fig. 9.27b adds two more wave patterns to the flow. At this
particular ; less than the diamond half-angle, there are leading-edge shocks on both
surfaces, the upper shock being much weaker. Then there are expansion fans on each
shoulder of the diamond: The Prandtl-Meyer angle change ,: equals the sum of the
leading-edge and trailing-edge diamond half-angles. Finally, the trailing-edge pattern
is similar to that of the flat plate (9.27a) and can be ignored in the calculation. Both
lower-surface pressures p2 and p4 are greater than their upper counterparts, and the lift
is nearly that of the flat plate. There is an additional drag due to thickness, because p4

and p5 on the trailing surfaces are lower than their counterparts p2 and p3. The dia-
mond drag is greater than the flat-plate drag, but this must be endured in practice to
achieve a wing structure strong enough to hold these forces.

The theory sketched in Fig. 9.27 is in good agreement with measured supersonic
lift and drag as long as the Reynolds number is not too small (thick boundary layers)
and the Mach number not too large (hypersonic flow). It turns out that for large ReC

and moderate supersonic Ma! the boundary layers are thin and separation seldom oc-
curs, so that the shock expansion theory, although frictionless, is quite successful. Let
us look now at an example.
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E9.19 

EXAMPLE 9.19

A flat-plate airfoil with C ! 2 m is immersed at ; ! 8° in a stream with Ma! ! 2.5 and p! !
100 kPa. Compute (a) CL and (b) CD, and compare with low-speed airfoils. Compute (c) lift and
(d) drag in newtons per unit span width.

Solution

Instead of using a lot of space outlining the detailed oblique-shock and Prandtl-Meyer expan-
sion computations, we list all pertinent results in Fig. E9.19 on the upper and lower surfaces.
Using the theories of Secs. 9.9 and 9.10, you should verify every single one of the calculations
in Fig. E9.19 to make sure that all details of shock expansion theory are well understood.
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The important final results are p2 and p3, from which the total force per unit width on the
plate is

F ! (p2 ( p3)bC ! (165.7 ( 56.85)(kPa)(1 m)(2 m) ! 218 kN 

The lift and drag per meter width are thus

L ! F cos 8° ! 216 kN Ans. (c)

D ! F sin 8° ! 30 kN Ans. (d)

These are very large forces for only 2 m2 of wing area.
From Eq. (9.102) the lift coefficient is

CL ! ! 0.246 Ans. (a)

The comparable low-speed coefficient from Eq. (8.64) is CL ! 24 sin 8° ! 0.874, which is 3.5
times larger.

From Eq. (9.102) the drag coefficient is

CD ! ! 0.035 Ans. (b)

From Fig. 7.25 for the NACA 0009 airfoil CD at ; ! 8° is about 0.009, or about 4 times smaller.

30 kN
"""
"12"(1.4)(100 kPa)(2.5)2(2 m2)

216 kN
"""
"12"(1.4)(100 kPa)(2.5)2(2 m2)



Thin-Airfoil Theory

Notice that this supersonic theory predicts a finite drag in spite of assuming frictionless flow
with infinite wing aspect ratio. This is called wave drag, and we see that the d’Alembert para-
dox of zero body drag does not occur in supersonic flow.

In spite of the simplicity of the flat-plate geometry, the calculations in Example 9.19
were laborious. In 1925 Ackeret [21] developed simple yet effective expressions for
the lift, drag, and center of pressure of supersonic airfoils, assuming small thickness
and angle of attack.

The theory is based on the linearized expression (9.89), where tan 8 ! surface de-
flection relative to the free stream and condition 1 is the free stream, Ma1 ! Ma!. For
the flat-plate airfoil, the total force F is based on

"
p2

p
(

!

p3" ! "
p2

p
(

!

p!" ( "
p3

p
(

!

p!"

! "
(Ma

k
2
!

M
(
a2

!

1)1/2" [; ( ((;)] (9.103) 

Substitution into Eq. (9.102) gives the linearized lift coefficient for a supersonic flat-
plate airfoil

CL ! ! "
(Ma2

!

4
(
;

1)1/2" (9.104)

Computations for diamond and other finite-thickness airfoils show no first-order effect
of thickness on lift. Therefore Eq. (9.104) is valid for any sharp-edged supersonic thin
airfoil at a small angle of attack.

The flat-plate drag coefficient is

CD ! CL tan ; ! CL; ! (9.105) 

However, the thicker airfoils have additional thickness drag. Let the chord line of the
airfoil be the x-axis, and let the upper-surface shape be denoted by yu(x) and the lower
profile by yl(x). Then the complete Ackeret drag theory (see, e.g., Ref. 8, sec. 14.6, for
details) shows that the additional drag depends on the mean square of the slopes of the
upper and lower surfaces, defined by

y*7*2* ! "
C
1

" #C

0 $"
d
d
y
x
"%

2
dx (9.106) 

The final expression for drag [8, p. 442] is

CD ! ';2 + "
1
2

" ( y*7*u*2* + y*7*l*2*)( (9.107) 

These are all in reasonable agreement with more exact computations, and their extreme
simplicity makes them attractive alternatives to the laborious but accurate shock ex-
pansion theory. Consider the following example.

4
""
(Ma2

! ( 1)1/2

4;2

""
(Ma2

! ( 1)1/2

(p2 ( p3)bC
""
"12"kp! Ma2

! bC
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Part (a)

EXAMPLE 9.20

Repeat parts (a) and (b) of Example 9.19, using the linearized Ackeret theory.

Solution

From Eqs. (9.104) and (9.105) we have, for Ma! ! 2.5 and ; ! 8° ! 0.1396 rad,

CL ! ! 0.244 CD ! ! 0.034 Ans. 

These are less than 3 percent lower than the more exact computations of Example 9.19.

A further result of the Ackeret linearized theory is an expression for the position
xCP of the center of pressure (CP) of the force distribution on the wing:

"
x
C
CP" ! 0.5 + "

S
2
u

;
(
C2

Sl" (9.108)

where Su is the cross-sectional area between the upper surface and the chord and Sl is
the area between the chord and the lower surface. For a symmetric airfoil (Sl ! Su) we
obtain xCP at the half-chord point, in contrast with the low-speed airfoil result of Eq.
(8.66), where xCP is at the quarter-chord.

The difference in difficulty between the simple Ackeret theory and shock expansion
theory is even greater for a thick airfoil, as the following example shows.

EXAMPLE 9.21

By analogy with Example 9.19 analyze a diamond, or double-wedge, airfoil of 2° half-angle and
C ! 2 m at ; ! 8° and Ma! ! 2.5. Compute CL and CD by (a) shock expansion theory and (b)
Ackeret theory. Pinpoint the difference from Example 9.19.

Solution

Again we omit the details of shock expansion theory and simply list the properties computed on
each of the four airfoil surfaces in Fig. E9.21. Assume p! ! 100 kPa. There are both a force F
normal to the chord line and a force P parallel to the chord. For the normal force the pressure
difference on the front half is p2 ( p3 ! 186.4 ( 65.9 ! 120.5 kPa, and on the rear half it is
p4 ( p5 ! 146.9 ( 48.1 ! 98.1 kPa. The average pressure difference is "12"(120.5 + 98.1) ! 109.3
kPa, so that the normal force is

F ! (109.3 kPa)(2 m2) ! 218.6 kN

For the chordwise force P the pressure difference on the top half is p3 ( p5 ! 65.9 ( 48.8 !
17.1 kPa, and on the bottom half it is p2 ( p4 ! 186.4 ( 146.9 ! 39.5 kPa. The average dif-
ference is "12"(17.1 + 39.5) ! 28.3 kPa, which when multiplied by the frontal area (maximum
thickness times 1-m width) gives

P ! (28.3 kPa)(0.07 m)(1 m) ! 2.0 kN

4(0.1396)2

""
(2.52 ( 1)1/2

4(0.1396)
""
(2.52 ( 1)1/2
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E9.21 

Both F and P have components in the lift and drag directions. The lift force normal to the free
stream is

L ! F cos 8° ( P sin 8° ! 216.2 kN 

and D ! F sin 8° + P cos 8° ! 32.4 kN

For computing the coefficients, the denominator of Eq. (9.102) is the same as in Example 9.19:
"12"kp! Ma2

! bC ! "12"(1.4)(100 kPa)(2.5)2(2 m2) ! 875 kN. Thus, finally, shock expansion theory
predicts

CL ! ! 0.247 CD ! ! 0.0370 Ans. (a)

Meanwhile, by Ackeret theory, CL is the same as in Example 9.20:

CL ! ! 0.244 Ans. (b)

This is 1 percent less than the shock expansion result above. For the drag we need the mean-
square slopes from Eq. (9.106)

y*7*u*2* ! y*7*l*2* ! tan2 2° ! 0.00122 

Then Eq. (9.107) predicts the linearized result

CD ! [(0.1396)2 + "12" (0.00122 + 0.00122)] ! 0.0362 Ans. (b)

This is 2 percent lower than shock expansion theory predicts. We could judge Ackeret theory to
be “satisfactory.’’ Ackeret theory predicts p2 ! 167 kPa ((11 percent), p3 ! 60 kPa ((9 per-
cent), p4 ! 140 kPa ((5 percent), and p5 ! 33 kPa ((6 percent).

We have gone about as far as we can go in an introductory treatment of compressible
flow. Of course, there is much more, and you are invited to study further in the refer-
ences at the end of the chapter.

4
""
(2.52 ( 1)1/2

4(0.1396)
""
(2.52 ( 1)1/2

32.4 kN
"
875 kN

216.2 kN
"
875 kN
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Ma ∞ = 2.5
p∞ = 100 k Pa

p0∞ = 1709 k Pa

8°

p 3 = 65.9 kPa
Ma 3 = 2.770

p
 5 = 48.8 kPa

Ma 5 = 2.967

p 4 = 146.9 k Pa
Ma 4 = 2.238

Chord length = 2 m

ω = 4° ∆
5 = 49.124°ω

ω = 4°∆
4 = 32.721°ω

∞ = 39.124°ω
Ma 2 = 2.086

p 02 = 1668 k Pa
p 2 = 186.4 k Pa

2 = 28.721°ω

 = 10°θ
  = 31.85°β

ω = 6°∆
3 = 45.124°ω

0.07 m
4˚

Part (b)

Three-Dimensional Supersonic
Flow



Fig. 9.28 Shadowgraph of flow past
an 8° half-angle cone at Ma! !
2.0. The turbulent boundary layer is
clearly visible. The Mach lines
curve slightly, and the Mach num-
ber varies from 1.98 just inside the
shock to 1.90 at the surface. (Cour-
tesy of U.S. Army Ballistic Re-
search Center, Aberdeen Proving
Ground.)

Three-dimensional supersonic flows are highly complex, especially if they con-
cern blunt bodies, which therefore contain embedded regions of subsonic and tran-
sonic flow, e.g., Fig. 9.10. Some flows, however, yield to accurate theoretical treat-
ment such as flow past a cone at zero incidence, as shown in Fig. 9.28. The exact
theory of cone flow is discussed in advanced texts [for example, 8, chap. 17], and
extensive tables of such solutions have been published [22, 23]. There are similar-
ities between cone flow and the wedge flows illustrated in Fig. 9.22: an attached
oblique shock, a thin turbulent boundary layer, and an expansion fan at the rear cor-
ner. However, the conical shock deflects the flow through an angle less than the
cone half-angle, unlike the wedge shock. As in the wedge flow, there is a maximum
cone angle above which the shock must detach, as in Fig. 9.22b. For k ! 1.4 and
Ma! ! !, the maximum cone half-angle for an attached shock is about 57°, com-
pared with the maximum wedge angle of 45.6° (see Ref. 23).

For more complicated body shapes one usually resorts to experimentation in a
supersonic wind tunnel. Figure 9.29 shows a wind-tunnel study of supersonic flow
past a model of an interceptor aircraft. The many junctions and wingtips and shape
changes make theoretical analysis very difficult. Here the surface-flow patterns,
which indicate boundary-layer development and regions of flow separation, have
been visualized by the smearing of oil drops placed on the model surface before the
test.
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Reusable Hypersonic Launch
Vehicles

As we shall see in the next chapter, there is an interesting analogy between gas-
dynamic shock waves and the surface water waves which form in an open-channel
flow. Chapter 11 of Ref. 14 explains how a water channel can be used in an inex-
pensive simulation of supersonic-flow experiments.

Having achieved reliable supersonic flight with both military and commercial air-
craft, the next step is probably to develop a hypersonic vehicle that can achieve or-
bit, yet be retrieved. Presently the United States employs the Space Shuttle, where
only the manned vehicle is retrieved, the very expensive giant rocket boosters be-
ing lost. In 1996, NASA selected Lockheed-Martin to develop the X-33, the first
smaller-scale step toward a retrievable single-stage-to-orbit (SSTO) vehicle, to be
called the VentureStar [36].

The X-33, shown in an artist’s rendering in Fig. 9.30, will be 20 m long, about
half the size of the VentureStar, and it will be suborbital. It will take off vertically,
rise to a height of 73 km, and coast back to earth at a steep (stressful) angle. Such
a flight will test many new plans for the VentureStar [37], such as metallic tiles, ti-
tanium components, graphite composite fuel tanks, high-voltage control actuators,
and Rocketdyne’s novel “aerospike” rocket nozzles. If successful, the VentureStar
is planned as a standard reusable, low-cost orbital vehicle. VentureStar will be 
39 m long and weigh 9.7 MN, of which 88 percent (965 tons!) will be propellant
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Fig. 9.29 Wind-tunnel test of the
Cobra P-530 supersonic interceptor.
The surface flow patterns are visu-
alized by the smearing of oil
droplets. (Courtesy of Northrop
Corp.)



Fig. 9.30 The X-33 is a half-size
suborbital test version of the Ven-
tureStar, which is planned as an or-
bital, low-cost retrievable space ve-
hicle. It takes off vertically but then
uses its lifting shape to glide back
to earth and land horizontally [36,
37]. (Courtesy of Lockheed Martin
Corp.)

and only 2.7 percent (260 kN) will be payload. The dream is that the X-33 and Ven-
tureStar and their progeny will lead to an era of routine, low-cost space travel ap-
propriate to the new millennium. 

This chapter is a brief introduction to a very broad subject, compressible flow, some-
times called gas dynamics. The primary parameter is the Mach number Ma ! V/a,
which is large and causes the fluid density to vary significantly. This means that the
continuity and momentum equations must be coupled to the energy relation and the
equation of state to solve for the four unknowns (p, $, T, V).

The chapter reviews the thermodynamic properties of an ideal gas and derives a 
formula for the speed of sound of a fluid. The analysis is then simplified to one-
dimensional steady adiabatic flow without shaft work, for which the stagnation en-
thalpy of the gas is constant. A further simplification to isentropic flow enables for-
mulas to be derived for high-speed gas flow in a variable-area duct. This reveals the
phenomenon of sonic-flow choking (maximum mass flow) in the throat of a nozzle. At
supersonic velocities there is the possibility of a normal-shock wave, where the gas
discontinuously reverts to subsonic conditions. The normal shock explains the effect
of back pressure on the performance of converging-diverging nozzles.

To illustrate nonisentropic flow conditions, there is a brief study of constant-area
duct flow with friction and with heat transfer, both of which lead to choking of the exit
flow.

The chapter ends with a discussion of two-dimensional supersonic flow, where
oblique-shock waves and Prandtl-Meyer (isentropic) expansion waves appear. With
a proper combination of shocks and expansions one can analyze supersonic air-
foils.
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