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The ability to analyxe a problem involves a combination of 
inherent insight and experience. The former, unfortu- 
nately, cannot be learned, but depends on the individual. 
However, the latter is  of equal importance, and can be gained 
with patient study. 
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2-9. Methods of Formulation 

In  the preceding sections of this chapter we have established the general formula- 
tion of conduction phenomena, We might now expect to obtain the formulation 
of any specific problem from the general formulation. This, of course, is possible, 
but it is not always convenient, especially if the problem under consideration 
is to be lumped in one or more directions. (This point will be clarified by the 
problem of Fig. 2-27.) Furthermore, the application of the general formulation 
to a specific problem is a mathematical process which eliminates the physics of 
the formulation, an important aspect of practical problems. By contrast, the 
physical approach which will be stressed in this text treats each problem in- 
dividually from the start of its formulation by bringing the physics into each 
phase of the formulation. To illustrate this statement let us compare the two 
methods in the light of three problems requiring the one-dimensional formula- 
tion of the first law of thermodynamics. 

The first problem is that of the one- 
dimensional cartesian system shown in I I ksYstem 
Fig. 2-25. When we equate the time rate of 1 (qz + 2 dx). 

!l A I change of internal energy to the net heat I-+ 
transfer across the boundaries of the system, 

I I  d u  
the physical approach yields I r p A d ~ -  at 

I I 

The general formulation, reduced to the one- 
I I 

dimensional cartesian form of Eq. (2-57), FIG. 2-25 
gives the same result,. 

Next, let us consider an insulated solid rod of radius R, cross section A,  and 
periphery P (Fig. 2-26). By either method, the first law of thermodynamics 
stated for the one-dimensional system shown in Fig. 2-26 yields the result of 
the previous problem, Eq. (2-1 17). 

Insulation 

x -- -dz-- ! 1 FIG. 2-26 
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z--i-dz-i FIG. 2-27 

Finally, consider the solid rod of the previous problem now subjected to the 
uniform peripheral heat flux q" (Fig. 2-27). The physical approach, in which 
we apply the first law to the one-dimensional system shown in Fig. 2-27, re- 
sults in 

By contrast, the one-dimensional form of the general formulation, leading again 
to Eq. (2-117), does not include the effect of the peripheral heat flux. This dif- 
ficulty, however, may be circumvented by considering instead the two-dimen- 
sional form of Eq. (2-57), 

where u*, qz, and q,* now depend on 1. as well as x and t. Next, averaging Eq. 
(2-119) radially, that is, multiplying each term by 27rr dr and integrating the 
result over the interval (0, R),  yields 

which is identical to Eq. (2-118). Here the radially averaged value of a de- 
pendent variable, say u, is defined as 

The discussion on the foregoing three examples may be generalized as fol- 
lows. A given problem may be formulated either by considering the appropriate 



[2-101 EXAMPLES 6 1 

specific case of the general formulation or by following, from the start, an in- 
dividual formulation suitable to the problem. Whenever the general formulation 
is available the former method may be used, but this requires the mathematical 
interpretation of the general formulation in the light of the problem under con- 
sideration. The latter method, on the other hand, involves following certain 
steps in a basic procedure for individual formulation, given below. For one- 
or multidimensional problems which are formulated to include all dimensions 
of the problem (such as the first two of the foregoing examples), the general or 
mathematical approach proves to be slightly shorter than the individual or 
physical approach. However, for multidimensional problems which we wish to 
formulate in fewer dimensions, that is, which we wish to lump in one or more 
directions (such as the third example), the mathematical approach, requiring 
an averaging process, becomes lengthy and inconvenient. 

The foregoing argument and the emphasis, in this text, on practical applica- 
tions of the study of heat transfer thus suggest that the physical approach be 
the preferred method of formulation. For convenience and later reference, this 
method of formulation is summarized in the following five steps: 

(i) Define a n  appropriate system or control volume. This step includes the 
selection of (a) a coordinate system, (b) a lumped or distributed formulation, and 
(c) a system or control volume in terms of (a) and (b). 

(ii) State the general laws for (i). The general laws, except in their lumped 
forms, are written in terms of a coordinate system. The differential forms of 
these laws depend on the direction but not the origin of coordinates, whereas 
the integral forms depend on the origin as well as the direction of coordinates. 
Although the differential forms apply locally, the lumped and integral forms 
are stated for the entire system or control volume. 

(iii) State the particular laws for (ii). The particular law describing the 
diffusion of heat (or momentum, mass, or electricity) is differential, applies 
locally, and depends on the direction but not the origin of coordinates. 

(iv) Obtain the governing equation from (ii) and (iii). This, such as the equa- 
tion of conduction, may be an algebraic, differential, or other equation involving 
the desired dependent variable, say the temperature, as the only unknown. The 
governing equation (except for its flow terms) is independent of the origin and 
direction of coordinates. 

(v) Speci fy  the initial and/or  boundary conditions pertinent to (iv). These 
conditions depend on the origin as well as the direction of coordinates. 

2-10. Examples 

In  this section the emphasis is placed on formulation; however, for those prob- 
lems whose formulation leads to an ordinary differential equation of first order 
or to one of second order with constant coefficients we shall also give the solution. 
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