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Having gained the foregoing mathematical background we now proceed to
the solution of problems by the method of separation of variables.

4-5. Separation of Variables. Steady
Two-Dimensional Cartesian Geometry

When the boundary conditions of a problem are in terms of specified 7, 97/dn,
or T/9n + BT, where n is the normal to the boundary and B a constant, the
solution may be expressed as a product of functions of cach coordinate sepa-
rately. This allows the boundary conditions to be expressed in terms of a single
variable, and reduces the partial differential equation to a set of ordinary dif-
ferential equations.

The essential features of the method will now be illustrated by means of a
steady two-dimensional example. Consider the second-order partial dlfferentlal
equation

al(x) + az(x) + az(@)T + bl(J) + bz(y) v + bs(y)T = 0.
(4-41)
A more generalized form of this equation which involves coefficients as functions

of both independent variables is not suitable for the separation of variables.
Assume the existence of a product solution

T(,y) = X@@)Y(y), (4-42)

where X is a function of x alone and Y is a function of y. This assumption be-
comes meaningful when the two functions X and Y actually satisfy separate
differential equations. .

Introducing Eq. (4-42) into Eq. (4-41) and dividing the result by XV
yields

() % ) X 0|5 = — [0 TT 4 sy oY T bwT|

(4-43)
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The left-hand side of this equation is independent of y and the right-hand side
is independent of x. Since x and y can vary independently, both sides of Eq.
(4-43) must be independent of either variable; that is, they must be equal to a
constant, say --A% or —\2  This constant is called the separation parameter.
Hence the partial differential equation of Eq. (4-41) is reduced to the following
two ordinary differential equations:

d2
ar@) D5 4 as(@) G+ [as(a) = NIX = 0,
(4-44)

% dy o
bi(y) oy + b2(y) En -+ [bs(y) F N]Y = 0.

The method of separation of variables is applicable to steady two-dimen-
sional problems if and when (i) one of the directions of the problem s expressed
by a homogeneous differential equation subject to homogeneous boundary condi-
tions (the homogeneous direction), while the other direction is expressed by a homo-
geneous differential equation subject to one homogeneous and one nonhomogeneous
boundary condition (the monhomogeneous direction), and (ii) the sign of A s
chosen such that the boundary-value problem of the homogeneous direction leads to
a characteristic-value problem.

The solutions obtained by the separation of variables are in the form of a
sum or integral, depending on whether the homogeneous direction is finite or
extends to infinity, respectively. This chapter and the next one are devoted to
series solutions which are applicable to problems homogeneous in finite direc-
tions. Problems requiring homogeneity in infinite domains are suitable to
integral solutions. These, being easier to solve by the Laplace transforms, are
delayed to Chapter 7 (see Section 7-5).

The result of the present section may readily be extended to steady three-
dimensional problems and to unsteady problems (see Section 4-11 and Chap-
ter 5, respectively). We shall now illustrate the method of separation of vari-
ables by a number of examples.

Example 4-1. Consider an infinitely long two-dimensional fin of thickness
(Fig. 4-10). The base temperature of the fin is F(y), the ambient temperature
T.. The heat transfer coefficient is large. We wish to find the steady tempera-
ture of the fin.

The differential formulation of the problem, according to the selected ref-
erence frame, is

8°T | 8°T
922 + W = 0,

TO,9) = F@y), T(wo,y) = To
T(z,0) = T, T(z, 1) = Th.



[4-5] SEPARATION OF VARIABLES 195

We now seek a solution by the method of separation of variables, which re-
quires that the differential equation and three of the boundary conditions be
homogeneous. Although the problem expressed in T does not satisfy these con-
ditions, the simple transformation

6=T—-T,

reduces three of the nmonhomogeneous boundary conditions to homogeneous
conditions without affecting the homogeneity of the differential equation. Thus
the formulation of the problem in § becomes

g:c—g g% =0, (4-45)
000, y) = Fly) — Ts = f(y),

(4-46)

0(o0, y) = 0, (4-47)

6(z, 0) = 0, (4-48)

0(z, 1) = 0. (4-49)
FIG. 4-10

Assuming the existence of a product solution of the form

0, y) = X()Y(y), (4-50)

then introducing Eq. (4-50) into Eq. (4-45) and dividing each term by XY, we
obtain
1d’X 1 4d%

—_— _ = 2 —
X a7 g = =N (4-51)

Here the sign of A? must be chosen such that the homogeneous y-direction
results in a characteristic-value problem. The selection of —\2 yields particular
solutions in y expressible by hyperbolic functions which, as indicated in Sec-
tion 4-1, cannot be made orthogonal; hence -2 is suitable to our problem.
Further use of Eq. (4-50) reduces the two-dimensional homogeneous bound-
ary conditions of the problem to one-dimensional conditions. This may readily
be illustrated using one of these conditions, say Eq. (4-47). Thus, since Y(y)
is arbitrary, 6(o0, y) = X(w0)Y(y) = 0 implies X{(w) = 0.
Finally, we have the problem separately expressed in the 2- and y-directions
as follows:
d’y 9
a + \Y = 0; Y0) =0 Y@ =0, (4-52)
d°X

e MX =0, X(x)=0. (4-53)
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