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Chapter 2 w Introduction to Conduction

The Heat Diffusion Equation

E——

A major objective in a conduction analysis is to determine the temperature field in a
medium resulting from conditions imposed on its boundaries. That is, we wish to
know the temperature distribution, which represents how temperature varies with
position in the medium. Once this distribution is known, the conduction heat flux at
any point in the medium or on its surface may be computed from Fourier’s law. Other
important quantities of interest may also be determined. For a solid, knowledge of the
temperature distribution could be used to ascertain structural integrity through deter-
mination of thermal stresses, expansions, and deflections. The temperature distribu-
tion could also be used to optimize the thickness of an insulating material or to deter-
mine the compatibility of special coatings or adhesives used with the material.

We now consider the manner in which the temperature distribution can be de-
termined. The approach follows the methodology described in Section 1.3.3 of ap-
plying the energy conservation requirement. In this case, we define a differential
control volume, identify the relevant energy transfer processes, and introduce the
appropriate rate equations. The result is a differential equation whose solution, for
prescribed boundary conditions, provides the temperature distribution in the
medium.

Consider a homogeneous medium within which there is no bulk motion (advec-
tion) and the temperature distribution 7(x, y, z) is expressed in Cartesian coordinates.
Following the methodology of applying conservation of energy (Section 1.3.3), we
first define an infinitesimally small (differential) control volume, dx-dy-dz, as
shown in Figure 2.11. Choosing to formulate the first law at an instant of time, the
second step is to consider the energy processes that are relevant to this control vol-
ume. If there are temperature gradients, conduction heat transfer will occur across

T(x, y 7) 47+ dr

FIGURE 2.11  Differential control volume, dx dy dz, for conduction analysis in Cartesian
coordinates.
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each of the control surfaces. The conduction heat rates perpendicular to each of the
control surfaces at the x, y, and z coordinate Jocations are indicated by the terms g,
q,,» and gq,, respectively. The conduction heat rates at the opposite surfaces can then
be expressed as a Taylor series expansion where, neglecting higher order terms,

99,

Geeax = e+ 5 dX (2.11a)
dq,

Gyray=qy T Edy (2.11b)
Jq

Govae =G: T 5, &2 2.11c)

In words, Equation 2.11a simply states that the x component of the heat transfer rate
at x + dx is equal to the value of this component at x plus the amount by which it
changes with respect to x times dx.

Within the medium there may also be an energy source term associated with
the rate of thermal energy generation. This term is represented as

E,= gdxdydz (2.12)

where ¢ is the rate at which energy is generated per unit volume of the medium
(W/m®). In addition, there may occur changes in the amount of the internal thermal
energy stored by the material in the control volume. If the material is not experienc-
ing a change in phase, latent energy effects are not pertinent, and the energy storage
term may be expressed as

E = pc,,‘f?—fdx dy dz (2.13)

where pc, dT/dt is the time rate of change of the sensible (thermal) energy of the
medium per unit volume.

Once again it is important to note that the terms £ , and E,, represent different
physical processes. The energy generation term Eg is a manifestation of some en-
ergy conversion process involving thermal energy on one hand and some other form
of energy, such as chemical, electrical, or nuclear, on the other. The term is positive
(a source) if thermal energy is being generated in the material at the expense of
some other energy form; it is negative (a sink) if thermal energy is being consumed.
In contrast, the energy storage term £, refers to the rate of change of thermal en-
ergy stored by the matter.

The last step in the methodology outlined in Section 1.3.3 is to express conser-
vation of energy using the foregoing rate equations. On a rate basis, the general
form of the conservation of energy requirement is

Ein+ég_éoulzésx (lllC)

Hence, recognizing that the conduction rates constitute the energy inflow, Ej;, and
outflow, E,, and substituting Equations 2.12 and 2.13, we obtain

. oT
At 4yt g+ qdxdydz = Gerge = Gyray T Gerar = PG gy dxdydz (2.14)
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Substituting from Equations 2.11, it follows that

4 aq, aq,
- qxdx—idy—a—qz“dz-kqudydz=pcp%dxdydz 2.15)

dx dy

The conduction heat rates may be evaluated from Fourier’s law,

_ T

g, = —kdydz g (2.16a)
- _ aT

q,= —kdxdz 3 (2.16b)
- _ aT

q,= —kdxdy 92 (2.16¢)

where each heat flux component of Equation 2.6 has been multiplied by the appro-
priate control surface (differential) area to obtain the heat transfer rate. Substituting
Equations 2.16 into Equation 2.15 and dividing out the dimensions of the control
volume (dx dy dz), we obtain

g (,0r\ . o (,oT\, o(, 0T\, . _ 4T

Equation 2.17 is the general form, in Cartesian coordinates, of the heat diffu-
sion equation. This equation, often referred to as the heat equation, provides the
basic tool for heat conduction analysis. From its solution, we can obtain the tem-
perature distribution T(x, y, z) as a function of time. The apparent complexity of
this expression should not obscure the fact that it describes an important physical
condition, that is, conservation of energy. You should have a clear understanding
of the physical significance of each term appearing in the equation. For example,
the term d(kdT/dx)/dx is related to the net conduction heat flux into the control vol-
ume for the x-coordinate direction. That is, multiplying by dx,

J T o .
a—x(kﬂdx—qx v (2.18)

with similar expressions applying for the fluxes in the y and z directions. In words,
the heat equation, Equation 2.17, therefore states that at any point in the medium the
net rate of energy transfer by conduction into a unit volume plus the volumetric rate
of thermal energy generation must equal the rate of change of thermal energy stored
within the volume.

It is often possible to work with simplified versions of Equation 2.17. For ex-
ample, if the thermal conductivity is constant, the heat equation is

2 2 2
9T 9T, 9T
axt  9yr  9z°

q9_ 19T
Z=a“5}" (2.19)

wmere a = klpc, is the thermal diffusivity. Additional simplifications of the general
form of the heat equation are often possible. For example, under steady-state
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conditions, there can be no change in the amount of energy storage; hence Equation
2.17 reduces to

o (or\, o, or\ a1\, ,_
a—x(k 6x)+ ay(k ay)+ (?Z(k 8z)+q 0 (2.20)

Moreover, if the heat transfer is one-dimensional (e.g., in the x direction) and there
is no energy generation, Equation 2.20 reduces to

d{,dT)\ _
E(kdx>_0 (2.21)

The important implication of this result is that under steady-state, one-dimensional
conditions with no energy generation, the heat flux is a constant in the direction of
transfer (dq/dx = 0).

The heat equation may also be expressed in cylindrical and spherical coordi-
nates. The differential control volumes for these two coordinate systems are shown
in Figures 2.12 and 2.13.

Cylindrical Coordinates When the del operator V of Equation 2.3 is expressed
in cylindrical coordinates, the general form of the heat flux vector, and hence of
Fourier’s law, is

v pvpe o fs0T 10T, T
q' = ~kVT k(z o i 5k 02) (2.22)
where
ooy kT s T
q4r = k ar 9 r ad) q: k 7 (223)
2+ dz

FIGURE 2.12 Differential control volume, dr - r d¢p - dz, for conduction analysis in
cylindrical coordinates (r, ¢, z).
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9o + do

Ficure 2.13  Differential control volume, dr - rsin 8 d¢p - r db, for conduction analysis in
spherical coordinates (r, ¢, 6).

are heat flux components in the radial, circumferential, and axial directions, respec-
tively. Applying an energy balance to the differential control volume of Figure 2.12,
the following general form of the heat equation is obtained:

14 1 0 oT
Hl ) (k)
(kﬂ) +q=pc, oL (2.24)

Spherical Coordinates In spherical coordinates the general form of the heat
flux vector and Fourier’s law is

= VT = k|9 4 ;10T 1 JT
¢ = —~kVT k( +j "6’6+krsin9¢9d>) (2.25)
where

g =190 g kol ek oT (2.26)

ar ro0 997 Trsin6ad

are heat flux components in the radial, polar, and azimuthal directions, respectively.
Applying an energy balance to the differential control volume of Figure 2.13, the
following general form of the heat equation is obtained:

19 20T 1 J oT
=z il +__ =z
rzar("’ ar) r2sin20 0 (" a¢>

1 ., _ . dT
r sm0<9¢9 (ksmﬁ )+q—pcp ot (2-27)

Since it is important that you be able to apply conservation principles to dif-
ferential control volumes, you should attempt to derive Equation 2.24 or 2.27 (see
Problems 2.35 and 2.36). Note that the temperature gradient in Fourier’s law must
have units of K/m. Hence, when evaluating the gradient for an angular coordinate,
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it must be expressed in terms of the differential change in arc length. For example,
the heat flux component in the circumferential direction of a cylindrical coordinate
system is gy = —(k/r)(3T/d¢), and not gy = —k(OT/Ig).

ExAMPLE 2.2

The temperature distribution across a wall 1m thick at a certain instant of time is
given as

T(x) = a + bx + cx?

where T is in degrees Celsius and x is in meters, while a = 900°C, b = —300°C/m,
and ¢ = —50°C/m?. A uniform heat generation, ¢ = 1000 W/m?®, is present in the
wall of area 10 m* having the properties p = 1600 kg/m®, k = 40 W/m - K, and Cp =
4 kJ/kg * K.

1. Determine the rate of heat transfer entering the wall (x = 0) and leaving the
wall (x = 1 m).

2. Determine the rate of change of energy storage in the wall.

3. Determine the time rate of temperature change at x = 0, 0.25, and 0.5 m.

SOLUTION

Known: Temperature distribution 7(x) at an instant of time # in a one-dimensional
wall with uniform heat generation.

Find:
1. Heat rates entering, ¢;, (x = 0), and leaving, g, (x = 1 m), the wall.
2. Rate of change of energy storage in the wall, Esl.
3. Time rate of temperature change at x = 0, 0.25, and 0.5 m.

Schematie:
A=10m? 4= 1000 W/m?
I i k =40 WmK
NN ' p=1600 kg/m®
] ¢, =4 kg
| N
Tx) = :

a+bx+ e ——p—
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