

Enhanced Adsorption Capacity of Biochars Derived from Water Hyacinth for **Ammonium-nitrogen by Different Pre- and Post-treatments**

Yudai Kohira*, Shinjiro Sato**

*Graduate school of engineering, Soka University, Tokyo, Japan, E-mail: e21m5809@soka-u.jp **Corresponding author. Tel: +81 42 691 9490, E-mail: ssato@soka.ac.jp

We support the Sustainable Development Goals

Materials

Untreated biochar (BC) Feedstock: water hyacinth (WH)

- Temperature: 350°C
- Retention time: 2 h Washed with DIW
- Sieved < 500 µm

Water Hyacinth

Methodology

Adsorption kinetics

Biochar dosage: 50 mg ➤ NH₄+-N solution: 25 ml

Experimental conditions: 25°C

> Contact time: 15-1440 min (8 series)

▶ Initial pH: 7.0 ± 0.05

➤ NH₄+-N concentration: 20 mg L⁻¹

Contact time: 240 min

➤ NH₄+-N concentration: 20 mg L⁻¹

KOH pre-treated biochar (KBC)

> WH was stirred into 0.5 M KOH for 6 h at 25°C

H₂O₂ post-treated biochar (HBC)

- ➤ BC was stirred into 30% H₂O₂ for 12 h at 25°C
- The biochar pH was adjusted to 12 by adding 0.1 M NaOH

Adsorption isotherm

Table.1 Basic properties of biochar

Biochar	рН	pHpzc	EC	CEC
			$(\mu S cm^{-1})$	(cmol ⁺ kg ⁻¹)
ВС	6.4	6.5	824	77
KBC	10.1	9.4	9.27	107
HBC	3.4 (→ 12)	9.2	897	76

Effect of different pH

> Contact time: 240 min **Initial pH**: 2, 4, 6, 8 (\pm 0.05) □ Initial pH: 4 ± 0.05

➤ NH₄+-N concentration: 10-1000 mg L⁻¹

Results

> The equilibrium adsorption was achieved at 240 min.

Pseudo-second-order model indicates the chemical adsorption mechanism

Fig.2 Effect of solution pH on adsorption capacity

- > The equilibrium adsorption was achieved at pH 4.0.
- ➤ This is mainly due to **electrostatic** interaction^[4] and cation exchange

Fig.3 Adsorption isotherm of biochars

- > The langmuir maximum adsorption amount was 21.5 mg g⁻¹ by HBC.
- Langmuir model indicates monolayer adsorption mechanism.

Conclusions

- > There was a significant increase in adsorption by the modified biochars compared to untreated.
- Main mechanism is chemical adsorption
 - Mostly cation exchange
 - Some electrostatic interaction

Special thanks to the Laboratory of Restoration Ecology and the lab of Environmental Chemical Engineering lab at Soka University for providing experimental equipment.

References

[1]Wondie et al., 2012. Biological Society of Ethiopia. [2]Wang et al., 2015. Chemosphere. 138, 120-126. [3]Hsu et al., 2019. Applied Science. 9, 5249. [4]Huff and Lee, 2016. Journal of Environmental Management. **165**, 17-21.

WLC18- 0037

Introduction

In efforts to utilize this hyacinth, we propose to harvest it, then carbonize it (pyrolysis) to make biochar with high adsorption capacity.

Ethiopia, has been invaded since

2011 by a notorious invasive water

hyacinth (Eichhornia crassipes)[1].

Lake Tana, the largest lake in

Biochar has shown good adsorption capacity for ammoniumnitrogen (NH₄+-N), which can be improved by pre-treatment of hyacinth (feedstock)^[2] or posttreatment of biochar^[3].

Objective

To increase NH₄+-N adsorption capacity of water hyacinth biochars by pre- and posttreatments.

Acknowledgments