
Cálculo Diferencial
| Nombre de la Unidad de Aprendizaje (UDA): | Cálculo diferencial | 
| Clave: | NELI06002 | 
| Programa educativo: | Licenciatura en Gestión empresarial | 
| Semestre: | 3 | 
Fundamentación
El Cálculo Diferencial consiste principalmente en tres temas fundamentales como límites, derivadas y aplicación de la derivada. Su estudio permite la comprensión de cómo cambian ciertos sistemas económicos o procesos de la Ingeniería Industrial, y áreas administrativas que afectan los negocios y el emprendimiento por medio de ecuaciones o funciones que los representan.
Este tipo de UDA del área básica contribuye al desarrollo del pensamiento crítico y la capacidad de abstracción, lo que coadyuva en la mejora de toma de decisiones y solución de problemas con aplicaciones prácticas en el campo de la Gestión Empresarial.
Competencia general
Aplica los fundamentos teóricos, reglas y métodos del cálculo diferencial para resolver y encontrar soluciones a diversos problemas relacionados a cambios o variaciones a partir de información teórica y práctica que ayuden a explicar sistemas del mundo real.
Contenidos temáticos
- Matemáticas de precálculo.- Leyes de los exponentes y productos notables.
- Factores y factorización.
- Fracciones y Operaciones con fracciones.
- Operaciones con raíces y racionalización.
- División sintética y determinantes.
 
- Funciones.- Funciones y sus gráficas.
- Operaciones con funciones.
 
- Límites.- Definición de límites y teoremas.
- Otros métodos y Continuidad de una función.
 
- Derivadas.- Definición y regla general de la derivada.
- Derivación por medio de fórmulas.
- Derivadas sucesivas.
- Derivación implícita.
 
- Máximos y Mínimos.- Definición de función creciente y decreciente.
- Criterio de la primera derivada para máximos y mínimos.
- Definición de concavidad y punto de inflexión.
- Criterio de la segunda derivada para máximos y mínimos.
 
- Aplicación de la derivada.- Problemas de aplicación general.
- Problemas de aplicación económico-administrativas.
 
Metodología de trabajo
Mediante la plataforma de educación se deberá considerar lo siguiente para el trabajo a distancia:
- Recursos y materiales: se encontrarán en la plataforma de aprendizaje como lecturas, videos y otros recursos didácticos complementarios.
- Interacción en plataforma: se podrán utilizar herramientas de comunicación como foros para el análisis de las temáticas planteadas y exponer dudas.
- Actividades: se establecerán consignas en cada clase que servirán de práctica y evidencia del aprendizaje del estudiante.
- Seguimiento del participante: será de forma constante con la finalidad de acompañar, motivar y retroalimentar los trabajos para alcanzar el aprendizaje.
Criterios de evaluación
Los criterios de evaluación son los siguientes:
- Entrega de tareas a tiempo, completas, limpias y ordenadas.
- Lecturas previas para entregar resumen del tema.
- Participación para el aporte de conceptos, dudas y comentarios.
- La evaluación mantendrá un enfoque holístico que involucre lo cuantitativo y cualitativo.
- El 100% de la calificación se basará en el desempeño, entregables y las pruebas de conocimiento.
Las ponderaciones en el proceso de evaluación se basarán en los siguientes porcentajes:
| Evidencia | Ponderación | 
|---|---|
| Pruebas de conocimiento | 40% | 
| Entregables (Tareas, resumen, prácticas) | 30% | 
| Actividades colaborativas y grupales | 10% | 
| Producto integrador (Proyecto) | 20% | 
| Total | 100% | 
Cronograma
| Clase digital | Contenidos abordados | Duración en semanas | 
|---|---|---|
| 1 | Leyes de los exponentes y Productos Notables | 1 | 
| 2 | Factores y factorización | 1 | 
| 3 | Fracciones y operaciones con fracciones | 1 | 
| 4 | Operaciones con Raíces y Racionalización | 1 | 
| 5 | División Sintética y determinantes | 1 | 
| 6 | Funciones y sus gráficas | 1 | 
| 7 | Operaciones con funciones | 1 | 
| 8 | Definición de límites y teoremas | 1 | 
| 9 | Otros métodos para calcular límites y Continuidad de una función | 1 | 
| 10 | Definición y regla general de la derivada | 1 | 
| 11 | Derivación por medio de fórmulas | 1 | 
| 12 | Derivadas sucesivas | 1 | 
| 13 | Derivación implícita | 1 | 
| 14 | Criterio de la primera derivada (Máximos y mínimos) | 1 | 
| 15 | Criterio de la segunda derivada (Máximos y mínimos) | 1 | 
| 16 | Aplicaciones de la Derivada (general) | 1 | 
| 17 | Aplicaciones de la derivada (Administración) | 1 | 
| 18 | Avances Proyecto final | 1 | 
Créditos
| AUTORA | DESARROLLO Y PRODUCCIÓN | 
|---|---|
| Ruth Ivonne Mata Chávez | SUME (Sistema Universitario de Multimodalidad Educativa) | 
